horoscop_urania / horoscop_urania.py
iulik-pisik's picture
Update horoscop_urania.py
a50e6a7 verified
raw
history blame
2.11 kB
from datasets import GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split, Features, Value, Audio,SplitGenerator, Split
import os
import json
import csv
import datasets
from datasets.utils.py_utils import size_str
from tqdm import tqdm
_BASE_URL = "https://huggingface.co/datasets/iulik-pisik/horoscop_urania/resolve/main/"
_AUDIO_URL = _BASE_URL + "audio.tar"
_TRANSCRIPT_URL = _BASE_URL + "transcript.tsv"
class HoroscopUrania(GeneratorBasedBuilder):
def _info(self):
return DatasetInfo(
description="Descrierea datasetului tău.",
features=Features({
"path": Value("string"),
"audio": Audio(sampling_rate=16000),
"sentence": Value("string"),
}),
supervised_keys=("audio", "transcript"),
homepage="https://huggingface.co/datasets/iulik-pisik/horoscop_urania",
citation="Referința de citare a datasetului",
)
def _split_generators(self, dl_manager):
downloaded_audio_files = dl_manager.download_and_extract(_AUDIO_URL)
downloaded_tsv_files = dl_manager.download(_TRANSCRIPT_URL)
return [
SplitGenerator(
name=Split.DATA,
gen_kwargs={
"archive_path": downloaded_audio_files,
"tsv_path": downloaded_tsv_files,
},
),
]
def _generate_examples(self, archive_path, tsv_path):
with open(tsv_path, encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for row in tqdm(reader, desc="Se citesc datele..."):
audio_file_name = row["path"]
audio_path = os.path.join(archive_path, audio_file_name)
if not os.path.isfile(audio_path):
continue
yield audio_file_name, {
"path": audio_path,
"audio": audio_path,
"sentence": row["sentence"],
}