Datasets:

Modalities:
Text
Formats:
csv
Languages:
Korean
ArXiv:
Libraries:
Datasets
pandas
License:
APEACH / README.md
jason9693's picture
Fix `license` metadata (#1)
e57e10c
|
raw
history blame
2.38 kB
---
annotations_creators:
- crowdsourced
- crowd-generated
language_creators:
- found
language:
- ko
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
paperswithcode_id: apeach
pretty_name: 'APEACH'
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- binary-classification
---
# Dataset for project: kor_hate_eval(APEACH)
![](https://github.com/jason9693/APEACH/raw/master/resource/dist_topics.png)
## Sample Code
<a href="https://colab.research.google.com/drive/1djd0fuoMYIaf7VCHaLQIziJi4_yBJruP#scrollTo=VPR24ysr5Q7k"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="base"/></a>
## Dataset Descritpion
Korean Hate Speech Evaluation Datasets : trained with [BEEP!](https://huggingface.co/datasets/kor_hate) and evaluate with [APEACH](https://github.com/jason9693/APEACH)
- **Repository: [Korean HateSpeech Evaluation Dataset](https://github.com/jason9693/APEACH)**
- **Paper: [APEACH: Attacking Pejorative Expressions with Analysis on Crowd-Generated Hate Speech Evaluation Datasets](https://arxiv.org/abs/2202.12459)**
- **Point of Contact: [Kichang Yang](ykcha9@gmail.com)**
### Languages
ko-KR
## Dataset Structure
### Data Instances
A sample from this dataset looks as follows:
```json
{'text': ['(ํ˜„์žฌ ํ˜ธํ…”์ฃผ์ธ ์‹ฌ์ •) ์•„18 ๋‚œ ๋งˆ๋ฅธํ•˜๋Š˜์— ๋‚ ๋ฒผ๋ฝ๋งž๊ณ  ํ˜ธํ…”๋งํ•˜๊ฒŒ์ƒ๊ฒผ๋Š”๋ฐ ๋ˆ„๊ตฐ ๊ณ„์† ์ถ”๋ชจ๋ฐ›๋„ค....',
'....ํ•œ๊ตญ์ ์ธ ๋ฏธ์ธ์˜ ๋Œ€ํ‘œ์ ์ธ ๋ถ„...๋„ˆ๋ฌด๋‚˜ ๊ณฑ๊ณ ์•„๋ฆ„๋‹ค์šด๋ชจ์Šต...๊ทธ๋ชจ์Šต๋’ค์˜ ์Šฌํ””์„ ๋ฏธ์ฒ˜ ์•Œ์ง€๋ชปํ–ˆ๋„ค์š”ใ… '],
'class': ['Spoiled', 'Default']}
```
### Dataset Fields
The dataset has the following fields (also called "features"):
```json
{
"text": "Value(dtype='string', id=None)",
"class": "ClassLabel(num_classes=2, names=['Default', 'Spoiled'], id=None)"
}
```
### Dataset Splits
This dataset is split into a train and validation split. The split sizes are as follow:
| Split name | Num samples |
| ------------ | ------------------- |
| train (binarized BEEP!) | 7896 |
| valid (APEACH) | 3770 |
## Citation
```
@article{yang2022apeach,
title={APEACH: Attacking Pejorative Expressions with Analysis on Crowd-Generated Hate Speech Evaluation Datasets},
author={Yang, Kichang and Jang, Wonjun and Cho, Won Ik},
journal={arXiv preprint arXiv:2202.12459},
year={2022}
}
```