Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 1 new columns ({'disk_usage_percent'})

This happened while the csv dataset builder was generating data using

hf://datasets/jayzou3773/CloudAnoBench/anom_dataset/scenario_3/anom_3_22.csv (at revision 12dbff5fc50d7a4e85f73b7548dd9edb4ab8cc26)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 644, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              timestamp: string
              cpu_usage: double
              mem_usage: double
              disk_usage_percent: double
              disk_io: double
              net_in: double
              net_out: double
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1096
              to
              {'timestamp': Value('string'), 'cpu_usage': Value('float64'), 'mem_usage': Value('float64'), 'disk_io': Value('float64'), 'net_in': Value('float64'), 'net_out': Value('float64')}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1456, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1055, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 894, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 970, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 1 new columns ({'disk_usage_percent'})
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/jayzou3773/CloudAnoBench/anom_dataset/scenario_3/anom_3_22.csv (at revision 12dbff5fc50d7a4e85f73b7548dd9edb4ab8cc26)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

timestamp
string
cpu_usage
float64
mem_usage
float64
disk_io
float64
net_in
float64
net_out
float64
2025-07-02T11:00:00Z
13.23
40.98
36.08
1.05
0.92
2025-07-02T11:00:05Z
12.35
42.58
29.12
1.18
0.79
2025-07-02T11:00:10Z
18.93
36.14
29.03
1.18
0.88
2025-07-02T11:00:15Z
19.55
42.69
21.42
0.74
1.06
2025-07-02T11:00:20Z
18.85
36.41
27.69
1.35
1.26
2025-07-02T11:00:25Z
11.6
40.48
22.14
0.92
0.89
2025-07-02T11:00:30Z
12.02
36.76
34.73
0.8
1.28
2025-07-02T11:00:35Z
14.41
42.55
28.06
1.24
1.31
2025-07-02T11:00:40Z
10.6
39.03
26.67
1.1
0.72
2025-07-02T11:00:45Z
12.09
36.84
30.89
0.71
1.13
2025-07-02T11:00:50Z
18.5
37.19
25.29
0.97
1.11
2025-07-02T11:00:55Z
11.15
39.57
24.6
0.53
0.65
2025-07-02T11:01:00Z
14.41
38.13
23.91
0.72
1.3
2025-07-02T11:01:05Z
19.15
38.87
38.2
0.52
0.76
2025-07-02T11:01:10Z
12
35.18
35.54
1.03
1.13
2025-07-02T11:01:15Z
10.55
37.64
29.19
1.48
1.34
2025-07-02T11:01:20Z
10.83
36.99
36.4
0.66
0.54
2025-07-02T11:01:25Z
11.11
37.53
37.54
0.89
1.22
2025-07-02T11:01:30Z
10.79
36.61
38.49
1.39
0.68
2025-07-02T11:01:35Z
14.27
36.81
34.64
1.14
0.73
2025-07-02T11:01:40Z
10.22
43.79
34.25
1.36
1.38
2025-07-02T11:01:45Z
19.2
36.66
30.82
1.07
0.77
2025-07-02T11:01:50Z
16.69
38.29
34.77
0.83
1.41
2025-07-02T11:01:55Z
16.41
37.04
30.57
1.22
1.24
2025-07-02T11:02:00Z
12.83
39.59
30
1.34
0.71
2025-07-02T11:02:05Z
19.8
37.65
21.28
1.27
0.73
2025-07-02T11:02:10Z
14.58
40.39
31.15
1.44
1.3
2025-07-02T11:02:15Z
12.76
39.97
24.25
1.14
0.66
2025-07-02T11:02:20Z
14.62
38.9
39.44
0.98
0.81
2025-07-02T11:02:25Z
15.66
42.65
34.65
0.88
0.55
2025-07-02T11:02:30Z
11.15
39.22
23.2
0.65
1.4
2025-07-02T11:02:35Z
12.13
39.86
29.18
0.67
0.69
2025-07-02T11:02:40Z
16.72
43.94
26.39
0.57
0.57
2025-07-02T11:02:45Z
12.38
41.36
22.81
0.52
1.07
2025-07-02T11:02:50Z
17.83
43.9
35.07
0.81
1.27
2025-07-02T11:02:55Z
18.47
35.88
38.23
0.74
1.18
2025-07-02T11:03:00Z
12.37
42.08
31.73
1
1.3
2025-07-02T11:03:05Z
12.54
38.07
25.83
1.24
1.45
2025-07-02T11:03:10Z
15.11
36.43
20.26
0.66
0.97
2025-07-02T11:03:15Z
15.67
38.66
27.78
0.95
1.08
2025-07-02T11:03:20Z
20
42.61
24.17
0.5
0.51
2025-07-02T11:03:25Z
28.33
44.31
28.91
1.05
1.03
2025-07-02T11:03:30Z
36.67
41.12
22.86
1.02
0.79
2025-07-02T11:03:35Z
45
37.22
24.07
0.92
1.36
2025-07-02T11:03:40Z
53.33
38.51
37.94
1.18
0.71
2025-07-02T11:03:45Z
61.67
37.19
31.92
0.85
0.58
2025-07-02T11:03:50Z
70
36.06
37.36
1.18
1.22
2025-07-02T11:03:55Z
78.33
43.25
27.16
0.74
1.36
2025-07-02T11:04:00Z
86.67
37.63
34.17
0.9
1.29
2025-07-02T11:04:05Z
95
44.85
22.33
1.04
0.61
2025-07-02T11:04:10Z
96.79
38.54
26.51
1.18
1.36
2025-07-02T11:04:15Z
97.15
41.18
34.76
0.64
1.21
2025-07-02T11:04:20Z
98.1
39.47
26.24
0.9
1.07
2025-07-02T11:04:25Z
98.74
42.55
38.29
1.2
1.37
2025-07-02T11:04:30Z
99.72
38.16
28.26
0.64
1.04
2025-07-02T11:04:35Z
96.79
41.99
34.2
0.93
0.92
2025-07-02T11:04:40Z
99.31
41.79
23.47
1.16
1.47
2025-07-02T11:04:45Z
99.8
37.42
37.38
1.01
1.2
2025-07-02T11:04:50Z
96.38
38.83
31.2
1.45
0.66
2025-07-02T11:04:55Z
99.92
37.51
24.6
1.31
0.77
2025-07-02T11:05:00Z
99.07
44.48
20.71
1.41
0.85
2025-07-02T11:05:05Z
95.63
41.15
26.96
0.97
0.65
2025-07-02T11:05:10Z
97.34
43.47
31.73
1.01
0.57
2025-07-02T11:05:15Z
96.37
38.97
23.57
0.52
0.68
2025-07-02T11:05:20Z
96.92
39.49
33.15
1.45
1.3
2025-07-02T11:05:25Z
96.08
37.24
29.89
0.96
0.6
2025-07-02T11:05:30Z
99.47
42.32
32.25
1.23
1.23
2025-07-02T11:05:35Z
96.26
44.39
20.54
1.43
0.74
2025-07-02T11:05:40Z
98.69
44.43
21.07
0.92
1.13
2025-07-02T11:05:45Z
97.53
39.04
20.91
0.71
1.17
2025-07-02T11:05:50Z
95
37.88
27.36
1.44
1.21
2025-07-02T11:05:55Z
96.04
38.59
30.14
0.85
0.83
2025-07-02T11:06:00Z
99.88
42.68
26.54
0.68
0.95
2025-07-02T11:06:05Z
99.14
35.3
23.47
1.33
0.93
2025-07-02T11:06:10Z
95.87
37.61
34.16
0.56
1.03
2025-07-02T11:06:15Z
99.68
35.75
36.06
0.96
1.23
2025-07-02T11:06:20Z
97.44
35.68
27.15
1.01
1.4
2025-07-02T11:06:25Z
96.98
35.91
32.24
0.89
0.99
2025-07-02T11:06:30Z
98.63
35.88
25.63
0.69
1.11
2025-07-02T11:06:35Z
95.88
39.86
34.56
1.5
0.68
2025-07-02T11:06:40Z
97.16
41.99
34.07
0.62
1.35
2025-07-02T11:06:45Z
95
44.55
30.36
0.57
1.11
2025-07-02T11:06:50Z
96.61
43
24.07
1.36
0.74
2025-07-02T11:06:55Z
98.39
35.38
32.72
1.28
0.67
2025-07-02T11:07:00Z
98.49
41.98
22.56
1.25
1.11
2025-07-02T11:07:05Z
96.4
41.63
29.1
0.69
0.67
2025-07-02T11:07:10Z
97.36
42.05
20.65
1.29
0.64
2025-07-02T11:07:15Z
96.96
40.43
39.76
0.79
0.94
2025-07-02T11:07:20Z
97.54
39.63
33.89
1.13
0.56
2025-07-02T11:07:25Z
97.62
41.58
34.24
1.43
0.99
2025-08-23T10:00:00Z
13.43
40.16
22.58
0.8
1.4
2025-08-23T10:00:05Z
15.73
39.81
32.45
0.72
1.07
2025-08-23T10:00:10Z
12.92
42.98
33.95
0.55
1.46
2025-08-23T10:00:15Z
15.72
39.67
20.99
0.78
1.19
2025-08-23T10:00:20Z
11.19
41.04
24.08
0.93
1.45
2025-08-23T10:00:25Z
15.13
40.71
23.46
0.63
1.45
2025-08-23T10:00:30Z
16.92
41.85
32.42
0.53
1.24
2025-08-23T10:00:35Z
17.01
39.92
17.27
0.84
0.99
2025-08-23T10:00:40Z
15.28
40.18
34.83
0.6
1.05
2025-08-23T10:00:45Z
14.23
42.82
27.47
0.76
1.1
End of preview.

CloudAnoBench

Paper: Towards Generalizable Context-aware Anomaly Detection: A Large-scale Benchmark in Cloud Environments

Project Page: https://jayzou3773.github.io/cloudanobench-agent/

CloudAnoBench is a large-scale benchmark for context-aware anomaly detection in cloud environments, jointly incorporating both metrics and logs to more faithfully reflect real-world conditions. It consists of 1,252 labeled cases spanning 28 anomalous scenarios and 16 deceptive normal scenarios (approximately 200K lines), with explicit annotations for anomaly type and scenario. By including deceptive normal cases where anomalous-looking metric patterns are explained by benign log events, the benchmark introduces higher ambiguity and difficulty compared to prior datasets, thereby providing a rigorous testbed for evaluating both anomaly detection and scenario identification.

πŸ“ Dataset Structure

The dataset is organized as follows:

cloudanobench/
β”œβ”€β”€ anom_dataset/          # Anomaly scenarios (without Malicious)
β”‚   β”œβ”€β”€ scenario_1/        # CPU Hog Process
β”‚   β”œβ”€β”€ scenario_2/        # Memory Leak
β”‚   └── ...
β”œβ”€β”€ mali_dataset/          # Malicious Events scenarios
β”‚   β”œβ”€β”€ scenario_1/        # Cryptomining Malware
β”‚   β”œβ”€β”€ scenario_2/        # DDoS Botnet Agent
β”‚   └── ...
└── norm_dataset/          # Deceptive Normal scnarios
    β”œβ”€β”€ scenario_1/        # Nightly Full Backup
    β”œβ”€β”€ scenario_2/        # Log Rotation & Compression
    └── ...

Each scenario directory contains:

  • *.csv files: Structured performance metrics and log data
  • *.log files: Raw log files

🚨 Anomaly scenarios (anom_dataset)

The anomaly scenarios contains 17 different types of system anomaly scenarios, organized by the following categories:

Resource Exhaustion & Bottlenecks

  • Scenario 1: CPU Hog Process - Resource exhaustion caused by CPU-intensive processes
  • Scenario 2: Memory Leak - Memory leakage issues
  • Scenario 3: Disk I/O Bottleneck - Disk I/O performance bottlenecks
  • Scenario 4: Noisy Neighbor - Noisy neighbor effects in shared environments
  • Scenario 5: Handle/Thread Exhaustion - Handle or thread pool exhaustion

Network Anomalies

  • Scenario 6: High Network Latency / Packet Loss - High network latency and packet loss
  • Scenario 7: Bandwidth Saturation - Network bandwidth saturation
  • Scenario 8: DNS Resolution Failure - DNS resolution failures
  • Scenario 9: Firewall/Security Group Misconfiguration - Firewall or security group misconfigurations

Software & Application Anomalies

  • Scenario 10: Application Crash Loop - Application crash-restart loops
  • Scenario 11: Deadlock / Livelock - Deadlock and livelock situations
  • Scenario 12: External Dependency Failure - External service dependency failures
  • Scenario 13: Application Misconfiguration - Application configuration errors
  • Scenario 14: Garbage Collection (GC) Storm - Excessive garbage collection activity

Other Complex & Subtle Anomalies

  • Scenario 15: Time Skew (Clock Drift) - System clock drift and time synchronization issues
  • Scenario 16: Kernel / Driver Bug - Kernel or device driver bugs
  • Scenario 17: (Additional anomaly scenario)

🦠 Malicious Events scenarios Dataset (mali_dataset)

The malicious activity dataset contains 12 different types of malicious event scenarios:

Malicious Events

  • Scenario 1: Cryptomining Malware - Cryptocurrency mining malware activities
  • Scenario 2: DDoS Botnet Agent - DDoS botnet agent operations
  • Scenario 3: Ransomware - Ransomware infection and encryption activities
  • Scenario 4: Data Exfiltration - Unauthorized data theft and transfer
  • Scenario 5: Spam Bot - Spam email distribution bot activities
  • Scenario 6: Rootkit / Backdoor - Rootkit installation and backdoor access
  • Scenario 7: Brute-force / Credential Stuffing Attack - Password brute-force and credential stuffing attacks
  • Scenario 8: Web Shell Beaconing & Command Execution - Web shell communication and remote command execution
  • Scenario 9: Password Cracking - Password cracking and hash breaking activities
  • Scenario 10: Log Deletion / Tampering - System log deletion and tampering
  • Scenario 11: Reverse Shell - Reverse shell establishment and communication
  • Scenario 12: Application-Layer DDoS Attack - Application-layer DDoS attacks

βœ… Deceptive Normal scnarios Dataset (norm_dataset)

The normal behavior dataset contains 16 different normal business operation scenarios:

Normal Business Operations

  • Scenario 1: Nightly Full Backup - Scheduled full system backup operations
  • Scenario 2: Log Rotation & Compression - Automated log file rotation and compression
  • Scenario 3: Periodic Data Aggregation - Regular data aggregation and summarization tasks
  • Scenario 4: Filesystem Cleanup - Routine filesystem maintenance and cleanup
  • Scenario 5: SSL Certificate Renewal - Automated SSL/TLS certificate renewal processes
  • Scenario 6: Blue-Green Deployment - Blue-green application deployment procedures
  • Scenario 7: Live Streaming Event Start - Live streaming service initialization
  • Scenario 8: Search Engine Aggressive Crawl - Intensive web crawling operations
  • Scenario 9: End-of-Month Financial Closing - Month-end financial processing workflows
  • Scenario 10: On-Demand Full Report Generation - Large-scale report generation tasks
  • Scenario 11: ETL Pipeline Execution - Extract, Transform, Load data pipeline operations
  • Scenario 12: On-Demand Video Transcoding - Video transcoding and processing tasks
  • Scenario 13: Database Compaction/Vacuum - Database maintenance and optimization
  • Scenario 14: Cache Eviction Storm - Cache invalidation and eviction processes
  • Scenario 15: Connection Pool Scaling - Dynamic connection pool scaling operations
  • Scenario 16: File Integrity Monitoring Scan - System-wide file integrity verification

πŸ”§ Usage

Data Loading Example

import pandas as pd
import os

# Load data for a specific scenario
def load_scenario_data(dataset_type, scenario_id):
    """
    Load data for a specific scenario
    
    Args:
        dataset_type: 'anom', 'mali', or 'norm'
        scenario_id: Scenario number (1-17 for anom, 1-12 for mali, 1-16 for norm)
    """
    base_path = f"{dataset_type}_dataset/scenario_{scenario_id}"
    
    csv_files = []
    log_files = []
    
    for file in os.listdir(base_path):
        if file.endswith('.csv'):
            csv_files.append(pd.read_csv(os.path.join(base_path, file)))
        elif file.endswith('.log'):
            log_files.append(os.path.join(base_path, file))
    
    return csv_files, log_files

# Example: Load CPU Hog Process anomaly data
csv_data, log_files = load_scenario_data('anom', 1)

Batch Data Processing

# Batch load all anomaly scenarios
anomaly_data = {}
for i in range(1, 18):  # scenarios 1-17
    anomaly_data[f'scenario_{i}'] = load_scenario_data('anom', i)

# Batch load all malicious activity scenarios  
malicious_data = {}
for i in range(1, 13):  # scenarios 1-12
    malicious_data[f'scenario_{i}'] = load_scenario_data('mali', i)

# Batch load all normal behavior scenarios
normal_data = {}
for i in range(1, 17):  # scenarios 1-16
    normal_data[f'scenario_{i}'] = load_scenario_data('norm', i)

πŸ“‹ File Naming Convention

  • Anomaly data: anom_{scenario_id}_{case_number}.{csv|log}
  • Malicious data: mali_{scenario_id}_{case_number}.{csv|log}
  • Normal data: norm_{scenario_id}_{case_number}.{csv|log}

Where:

  • scenario_id: Scenario number
  • case_number: Case number within the scenario
  • Extension: .csv for structured data, .log for raw logs
@misc{zou2025generalizablecontextawareanomalydetection,
  title={Towards Generalizable Context-aware Anomaly Detection: A Large-scale Benchmark in Cloud Environments}, 
  author={Xinkai Zou and Xuan Jiang and Ruikai Huang and Haoze He and Parv Kapoor and Hongrui Wu and Yibo Wang and Jian Sha and Xiongbo Shi and Zixun Huang and Jinhua Zhao},
  year={2025},
  eprint={2508.01844},
  archivePrefix={arXiv},
  primaryClass={cs.AI},
  url={https://arxiv.org/abs/2508.01844}, 
}
Downloads last month
435