Datasets:

ArXiv:
License:
Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    KeyError
Message:      'mp3'
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1748, in _prepare_split_single
                  for key, record in generator:
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 797, in wrapped
                  for item in generator(*args, **kwargs):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/webdataset/webdataset.py", line 126, in _generate_examples
                  example[field_name] = {"path": example["__key__"] + "." + field_name, "bytes": example[field_name]}
              KeyError: 'mp3'
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1524, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1099, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1627, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1784, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

__key__
string
__url__
string
mp3
audio
src/00/405/631
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/250
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/954
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/526
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/281
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/147
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/769
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/402
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/870
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/715
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/374
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/877
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/064
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/373
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/636
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/191
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/257
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/982
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/521
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/953
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/479
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/018
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/582
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/225
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/921
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/132
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/259
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/288
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/477
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/198
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/528
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/470
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/802
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/767
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/306
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/643
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/585
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/926
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/554
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/692
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/333
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/494
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/783
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/024
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/445
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/837
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/100
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/561
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/217
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/676
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/089
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/058
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/439
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/107
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/566
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/348
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/729
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/968
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/493
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/334
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/755
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/023
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/442
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/568
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/346
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/893
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/397
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/175
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/514
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/262
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/172
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/961
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/265
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/604
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/839
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/219
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/678
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/894
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/087
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/437
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/390
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/828
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/274
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/615
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/502
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/970
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/381
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/854
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/426
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/731
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/096
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/208
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/669
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/421
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/882
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/091
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/736
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/118
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/273
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
src/00/405/612
hf://datasets/jhu-clsp/seamless-align@8abc0ac98aedc10899e73a2d9e3c2c57cc6504fc/data_s2s/arA-enA/src.tar.gz
End of preview.

Dataset Card for Seamless-Align (WIP). Inspired by https://huggingface.co/datasets/allenai/nllb

Dataset Summary

This dataset was created based on metadata for mined Speech-to-Speech(S2S), Text-to-Speech(TTS) and Speech-to-Text(S2T) released by Meta AI. The S2S contains data for 35 language pairs. The S2S dataset is ~1000GB compressed.

How to use the data

There are two ways to access the data:

  • Via the Hugging Face Python datasets library
Scripts coming soon
  • Clone the git repo
git lfs install
git clone https://huggingface.co/datasets/jhu-clsp/seamless-align

Supported Tasks and Leaderboards

N/A

Languages

Language pairs can be found here.

Dataset Structure

The S2S dataset contains two gzipped files src.tar.gz annd tgt.tar.gz

Data Instances

The number of instances for each language pair can be found in the dataset_infos.json file.

Data Fields

Data Field can be found here.

Data Splits

The data is not split.

Dataset Creation

Curation Rationale

Source Data

Inspect links in metadata

Who are the source language producers?

Speech and Text was collected from the web many of which are web crawls.

Annotations

Annotation process

Parallel sentences were identified using SONAR encoders. (Duquenne et al., 2023)

Who are the annotators?

The data was not human annotated.

Personal and Sensitive Information

Data may contain personally identifiable information, sensitive content, or toxic content that was publicly shared on the Internet.

Considerations for Using the Data

Social Impact of Dataset

This dataset provides data for training machine learning systems for many languages.

Discussion of Biases

Biases in the data have not been specifically studied, however as the original source of data is World Wide Web it is likely that the data has biases similar to those prevalent in the Internet. The data may also exhibit biases introduced by language identification and data filtering techniques; lower resource languages generally have lower accuracy.

Other Known Limitations

Some of the translations are in fact machine translations. While some website machine translation tools are identifiable from HTML source, these tools were not filtered out en mass because raw HTML was not available from some sources and CommonCrawl processing started from WET files.

Additional Information

Dataset Curators

The data was not curated.

Licensing Information

The dataset is released under the terms of MIT. PLEASE, USE DATA RESPONSIBLY

Citation Information

Seamless Communication et al, SeamlessM4T: Massively Multilingual & Multimodal Machine Translation. arXiv https://arxiv.org/abs/2308.11596, 2023.
Duquenne et al, SONAR: Sentence-Level Multimodal and Language-Agnostic Representations. arXiv https://arxiv.org/abs/2308.11466, 2023

Contributions

We thank the Seamless Communication Meta AI team for open sourcing the meta data and instructions on how to use it with special thanks to Loïc Barrault, Yu-An Chung, Mariano Cora Meglioli, David Dale, Ning Dong, Paul-Ambroise Duquenne, Hady Elsahar, Hongyu Gong, Kevin Heffernan, John Hoffman, Christopher Klaiber, Pengwei Li, Daniel Licht, Jean Maillard, Alice Rakotoarison, Kaushik Ram Sadagopan, Guillaume Wenzek, Ethan Ye, Bapi Akula, Peng-Jen Chen, Naji El Hachem, Brian Ellis, Gabriel Mejia Gonzalez, Justin Haaheim, Prangthip Hansanti, Russ Howes, Bernie Huang, Min-Jae Hwang, Hirofumi Inaguma, Somya Jain, Elahe Kalbassi, Amanda Kallet, Ilia Kulikov, Janice Lam, Daniel Li, Xutai Ma, Ruslan Mavlyutov, Benjamin Peloquin, Mohamed Ramadan, Abinesh Ramakrishnan, Anna Sun, Kevin Tran, Tuan Tran, Igor Tufanov, Vish Vogeti, Carleigh Wood, Yilin Yang, Bokai Yu, Pierre Andrews, Can Balioglu, Marta R. Costa-jussà, Onur Celebi, Maha Elbayad, Cynthia Gao, Francisco Guzmán, Justine Kao, Ann Lee, Alexandre Mourachko, Juan Pino, Sravya Popuri, Christophe Ropers, Safiyyah Saleem, Holger Schwenk, Paden Tomasello, Changhan Wang, Jeff Wang, Skyler Wang. We also thank the Center for Language and Speech Processing(CLSP) for hosting and releasing this data, including Bismarck Bamfo Odoom and Philipp Koehn (for engineering efforts to host the data, and releasing the huggingface dataset), and Alexandre Mourachko (for organizing the connection).

Downloads last month
180