license: mit
viewer: true
task_categories:
- table-question-answering
- table-to-text
language:
- en
pretty_name: TableEval
configs:
- config_name: default
data_files:
- split: comtqa_fin
path: ComTQA/FinTabNet/comtqa_fintabnet.json
- split: comtqa_pmc
path: ComTQA/PubTab1M/comtqa_pubtab1m.json
- split: logic2text
path: Logic2Text/logic2text.json
- split: logicnlg
path: LogicNLG/logicnlg.json
- split: scigen
path: SciGen/scigen.json
- split: numericnlg
path: numericNLG/numericnlg.json
size_categories:
- 1K<n<10K
TableEval dataset
TableEval is developed to benchmark and compare the performance of (M)LLMs on tables from scientific vs. non-scientific sources, represented as images vs. text. It comprises six data subsets derived from the test sets of existing benchmarks for question answering (QA) and table-to-text (T2T) tasks, containing a total of 3017 tables and 11312 instances. The scienfific subset includes tables from pre-prints and peer-reviewed scholarly publications, while the non-scientific subset involves tables from Wikipedia and financial reports. Each table is available as a PNG image and in four textual formats: HTML, XML, LaTeX, and Dictionary (Dict). All task annotations are taken from the source datasets. Please, refer to the Table Understanding and (Multimodal) LLMs: A Cross-Domain Case Study on Scientific vs. Non-Scientific Data paper for more details.
Overview and statistics
**Symbol β¬οΈ indicates formats already available in the given corpus, while π and βοΈ denote formats extracted from the table source files (e. g., article PDF, Wikipedia page) and generated from other formats in this study, respectively.
Number of tables per format and data subset
| Dataset | Image | Dict | LaTeX | HTML | XML |
|---|---|---|---|---|---|
| ComTQA (PubTables-1M) | 932 | 932 | 932 | 932 | 932 |
| numericNLG | 135 | 135 | 135 | 135 | 135 |
| SciGen | 1035 | 1035 | 928 | 985 | 961 |
| ComTQA (FinTabNet) | 659 | 659 | 659 | 659 | 659 |
| LogicNLG | 184 | 184 | 184 | 184 | 184 |
| Logic2Text | 72 | 72 | 72 | 72 | 72 |
| Total | 3017 | 3017 | 2910 | 2967 | 2943 |
Total number of instances per format and data subset
| Dataset | Image | Dict | LaTeX | HTML | XML |
|---|---|---|---|---|---|
| ComTQA (PubTables-1M) | 6232 | 6232 | 6232 | 6232 | 6232 |
| numericNLG | 135 | 135 | 135 | 135 | 135 |
| SciGen | 1035 | 1035 | 928 | 985 | 961 |
| ComTQA (FinTabNet) | 2838 | 2838 | 2838 | 2838 | 2838 |
| LogicNLG | 917 | 917 | 917 | 917 | 917 |
| Logic2Text | 155 | 155 | 155 | 155 | 155 |
| Total | 11312 | 11312 | 11205 | 11262 | 11238 |
Structure
βββ ComTQA
β βββ FinTabNet
β β βββ comtqa_fintabnet.json
β β βββ comtqa_fintabnet_imgs.zip
β βββ PubTab1M
β β βββ comtqa_pubtab1m.json
β β βββ comtqa_pubtab1m_imgs.zip
β βββ Logic2Text
β β βββ logic2text.json
β β βββ logic2text_imgs.zip
β βββ LogicNLG
β β βββ logicnlg.json
β β βββ logicnlg_imgs.zip
β βββ SciGen
β β βββ scigen.json
β β βββ scigen_imgs.zip
β βββ numericNLG
β β βββ numericnlg.json
βββ βββ βββ numericnlg_imgs.zip
For more details on each subset, please, refer to the respective README.md files: ComTQA, Logic2Text, LogicNLG, SciGen, numericNLG.
Citation
@inproceedings{borisova-etal-2025-table,
title = "Table Understanding and (Multimodal) {LLM}s: A Cross-Domain Case Study on Scientific vs. Non-Scientific Data",
author = {Borisova, Ekaterina and
Barth, Fabio and
Feldhus, Nils and
Abu Ahmad, Raia and
Ostendorff, Malte and
Ortiz Suarez, Pedro and
Rehm, Georg and
M{\"o}ller, Sebastian},
editor = "Chang, Shuaichen and
Hulsebos, Madelon and
Liu, Qian and
Chen, Wenhu and
Sun, Huan",
booktitle = "Proceedings of the 4th Table Representation Learning Workshop",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.trl-1.10/",
pages = "109--142",
ISBN = "979-8-89176-268-8",
abstract = "Tables are among the most widely used tools for representing structured data in research, business, medicine, and education. Although LLMs demonstrate strong performance in downstream tasks, their efficiency in processing tabular data remains underexplored. In this paper, we investigate the effectiveness of both text-based and multimodal LLMs on table understanding tasks through a cross-domain and cross-modality evaluation. Specifically, we compare their performance on tables from scientific vs. non-scientific contexts and examine their robustness on tables represented as images vs. text. Additionally, we conduct an interpretability analysis to measure context usage and input relevance. We also introduce the TableEval benchmark, comprising 3017 tables from scholarly publications, Wikipedia, and financial reports, where each table is provided in five different formats: Image, Dictionary, HTML, XML, and LaTeX. Our findings indicate that while LLMs maintain robustness across table modalities, they face significant challenges when processing scientific tables."
}
Funding
This work has received funding through the DFG project NFDI4DS (no. 460234259).