text
stringlengths 78
104k
| score
float64 0
0.18
|
---|---|
def create(self, max_wait=300, allocated_storage=None,
encryption_at_rest=None, restore_to_time=None, **kwargs):
"""
Create an instance of the PostgreSQL service with the typical starting
settings.
:param max_wait: service is created asynchronously, so will only wait
this number of seconds before giving up.
:param allocated_storage: int for GBs to be allocated for storage
:param encryption_at_rest: boolean for encrypting data that is stored
:param restore_to_time: UTC date within recovery period for db
backup to be used when initiating
"""
# MAINT: Add these if there is demand for it and validated
if allocated_storage or encryption_at_rest or restore_to_time:
raise NotImplementedError()
# Will need to wait for the service to be provisioned before can add
# service keys and get env details.
self.service.create(async=True, create_keys=False)
while self._create_in_progress() and max_wait > 0:
if max_wait % 5 == 0:
logging.warning('Can take {}s for create to finish.'.format(max_wait))
time.sleep(1)
max_wait -= 1
# Now get the service env (via service keys)
cfg = self.service._get_service_config()
self.service.settings.save(cfg)
hostname = predix.config.get_env_key(self.use_class, 'hostname')
os.environ[hostname] = self.service.settings.data['hostname']
password = predix.config.get_env_key(self.use_class, 'password')
os.environ[password] = self.service.settings.data['password']
port = predix.config.get_env_key(self.use_class, 'port')
os.environ[port] = str(self.service.settings.data['port'])
username = predix.config.get_env_key(self.use_class, 'username')
os.environ[username] = self.service.settings.data['username']
uri = predix.config.get_env_key(self.use_class, 'uri')
os.environ[uri] = self.service.settings.data['uri'] | 0.002408 |
def run(self, records):
"""Runs the batch upload
:param records: an iterable containing queue entries
"""
self_name = type(self).__name__
for i, batch in enumerate(grouper(records, self.BATCH_SIZE, skip_missing=True), 1):
self.logger.info('%s processing batch %d', self_name, i)
try:
for j, proc_batch in enumerate(grouper(
process_records(batch).iteritems(), self.BATCH_SIZE, skip_missing=True), 1):
self.logger.info('%s uploading chunk #%d (batch %d)', self_name, j, i)
self.upload_records({k: v for k, v in proc_batch}, from_queue=True)
except Exception:
self.logger.exception('%s could not upload batch', self_name)
return
self.logger.info('%s finished batch %d', self_name, i)
self.processed_records(batch)
self.logger.info('%s finished', self_name) | 0.006154 |
def get_acmg(acmg_terms):
"""Use the algorithm described in ACMG paper to get a ACMG calssification
Args:
acmg_terms(set(str)): A collection of prediction terms
Returns:
prediction(int):
0 - Uncertain Significanse
1 - Benign
2 - Likely Benign
3 - Likely Pathogenic
4 - Pathogenic
"""
prediction = 'uncertain_significance'
# This variable indicates if Pathogenecity Very Strong exists
pvs = False
# Collection of terms with Pathogenecity Strong
ps_terms = []
# Collection of terms with Pathogenecity moderate
pm_terms = []
# Collection of terms with Pathogenecity supporting
pp_terms = []
# This variable indicates if Benign impact stand-alone exists
ba = False
# Collection of terms with Benign evidence Strong
bs_terms = []
# Collection of terms with supporting Benign evidence
bp_terms = []
for term in acmg_terms:
if term.startswith('PVS'):
pvs = True
elif term.startswith('PS'):
ps_terms.append(term)
elif term.startswith('PM'):
pm_terms.append(term)
elif term.startswith('PP'):
pp_terms.append(term)
elif term.startswith('BA'):
ba = True
elif term.startswith('BS'):
bs_terms.append(term)
elif term.startswith('BP'):
bp_terms.append(term)
# We need to start by checking for Pathogenecity
pathogenic = is_pathogenic(pvs, ps_terms, pm_terms, pp_terms)
likely_pathogenic = is_likely_pathogenic(pvs, ps_terms, pm_terms, pp_terms)
benign = is_benign(ba, bs_terms)
likely_benign = is_likely_benign(bs_terms, bp_terms)
if (pathogenic or likely_pathogenic):
if (benign or likely_benign):
prediction = 'uncertain_significance'
elif pathogenic:
prediction = 'pathogenic'
else:
prediction = 'likely_pathogenic'
else:
if benign:
prediction = 'benign'
if likely_benign:
prediction = 'likely_benign'
return prediction | 0.000463 |
def _ancestors_or_self(
self, qname: Union[QualName, bool] = None) -> List[InstanceNode]:
"""XPath - return the list of receiver's ancestors including itself."""
res = [] if qname and self.qual_name != qname else [self]
return res + self.up()._ancestors(qname) | 0.006757 |
def iterator_chain(variables: VarType, parent: str = None) -> Iterable[VarMatrix]:
"""This successively appends each element of an array to a single list of values.
This takes a list of values and puts all the values generated for each element in
the list into a single list of values. It uses the :func:`itertools.chain` function to
achieve this. This function is particularly useful for specifying multiple types of
simulations with different parameters.
Args:
variables: The variables object
parent: Unused
"""
logger.debug("Yielding from append iterator")
if not isinstance(variables, list):
raise ValueError(
f"Append keyword only takes a list of arguments, got {variables} of type {type(variables)}"
)
# Create a single list containing all the values
yield list(
chain.from_iterable(
variable_matrix(item, parent, "product") for item in variables
)
) | 0.007143 |
def _render_batch(self,
non_fluents: NonFluents,
states: Fluents, actions: Fluents, interms: Fluents,
rewards: np.array,
horizon: Optional[int] = None) -> None:
'''Prints `non_fluents`, `states`, `actions`, `interms` and `rewards`
for given `horizon`.
Args:
states (Sequence[Tuple[str, np.array]]): A state trajectory.
actions (Sequence[Tuple[str, np.array]]): An action trajectory.
interms (Sequence[Tuple[str, np.array]]): An interm state trajectory.
rewards (np.array): Sequence of rewards (1-dimensional array).
horizon (Optional[int]): Number of timesteps.
'''
if horizon is None:
horizon = len(states[0][1])
self._render_round_init(horizon, non_fluents)
for t in range(horizon):
s = [(s[0], s[1][t]) for s in states]
f = [(f[0], f[1][t]) for f in interms]
a = [(a[0], a[1][t]) for a in actions]
r = rewards[t]
self._render_timestep(t, s, a, f, r)
self._render_round_end(rewards) | 0.006029 |
def load_name(self, load):
'''
Return the primary name associate with the load, if an empty string
is returned then the load does not match the function
'''
if 'eauth' not in load:
return ''
fstr = '{0}.auth'.format(load['eauth'])
if fstr not in self.auth:
return ''
try:
pname_arg = salt.utils.args.arg_lookup(self.auth[fstr])['args'][0]
return load[pname_arg]
except IndexError:
return '' | 0.003831 |
def zpk(self, zeros, poles, gain, analog=True, **kwargs):
"""Filter this `TimeSeries` by applying a zero-pole-gain filter
Parameters
----------
zeros : `array-like`
list of zero frequencies (in Hertz)
poles : `array-like`
list of pole frequencies (in Hertz)
gain : `float`
DC gain of filter
analog : `bool`, optional
type of ZPK being applied, if `analog=True` all parameters
will be converted in the Z-domain for digital filtering
Returns
-------
timeseries : `TimeSeries`
the filtered version of the input data
See Also
--------
TimeSeries.filter
for details on how a digital ZPK-format filter is applied
Examples
--------
To apply a zpk filter with file poles at 100 Hz, and five zeros at
1 Hz (giving an overall DC gain of 1e-10)::
>>> data2 = data.zpk([100]*5, [1]*5, 1e-10)
"""
return self.filter(zeros, poles, gain, analog=analog, **kwargs) | 0.00182 |
def _has_x(self, kwargs):
'''Returns True if x is explicitly defined in kwargs'''
return (('x' in kwargs) or (self._element_x in kwargs) or
(self._type == 3 and self._element_1mx in kwargs)) | 0.009009 |
def record_xml_output(rec, tags=None, order_fn=None):
"""Generate the XML for record 'rec'.
:param rec: record
:param tags: list of tags to be printed
:return: string
"""
if tags is None:
tags = []
if isinstance(tags, str):
tags = [tags]
if tags and '001' not in tags:
# Add the missing controlfield.
tags.append('001')
marcxml = ['<record>']
# Add the tag 'tag' to each field in rec[tag]
fields = []
if rec is not None:
for tag in rec:
if not tags or tag in tags:
for field in rec[tag]:
fields.append((tag, field))
if order_fn is None:
record_order_fields(fields)
else:
record_order_fields(fields, order_fn)
for field in fields:
marcxml.append(field_xml_output(field[1], field[0]))
marcxml.append('</record>')
return '\n'.join(marcxml) | 0.00106 |
def _create_reference_value_options(self, keys, finished_keys):
"""this method steps through the option definitions looking for
alt paths. On finding one, it creates the 'reference_value_from' links
within the option definitions and populates it with copied options."""
# a set of known reference_value_from_links
set_of_reference_value_option_names = set()
for key in keys:
if key in finished_keys:
continue
an_option = self.option_definitions[key]
if an_option.reference_value_from:
fully_qualified_reference_name = '.'.join((
an_option.reference_value_from,
an_option.name
))
if fully_qualified_reference_name in keys:
continue # this referenced value has already been defined
# no need to repeat it - skip on to the next key
reference_option = an_option.copy()
reference_option.reference_value_from = None
reference_option.name = fully_qualified_reference_name
# wait, aren't we setting a fully qualified dotted name into
# the name field? Yes, 'add_option' below sees that
# full pathname and does the right thing with it to ensure
# that the reference_option is created within the
# correct namespace
set_of_reference_value_option_names.add(
fully_qualified_reference_name
)
self.option_definitions.add_option(reference_option)
for a_reference_value_option_name in set_of_reference_value_option_names:
for x in range(a_reference_value_option_name.count('.')):
namespace_path = \
a_reference_value_option_name.rsplit('.', x + 1)[0]
self.option_definitions[namespace_path].ref_value_namespace()
return set_of_reference_value_option_names | 0.002426 |
def add_changes_markup(dom, ins_nodes, del_nodes):
"""
Add <ins> and <del> tags to the dom to show changes.
"""
# add markup for inserted and deleted sections
for node in reversed(del_nodes):
# diff algorithm deletes nodes in reverse order, so un-reverse the
# order for this iteration
insert_or_append(node.orig_parent, node, node.orig_next_sibling)
wrap(node, 'del')
for node in ins_nodes:
wrap(node, 'ins')
# Perform post-processing and cleanup.
remove_nesting(dom, 'del')
remove_nesting(dom, 'ins')
sort_del_before_ins(dom)
merge_adjacent(dom, 'del')
merge_adjacent(dom, 'ins') | 0.001495 |
def rename(self, old_table, new_table):
"""
Rename a table.
You must have ALTER and DROP privileges for the original table,
and CREATE and INSERT privileges for the new table.
"""
try:
command = 'RENAME TABLE {0} TO {1}'.format(wrap(old_table), wrap(new_table))
except:
command = 'ALTER TABLE {0} RENAME {1}'.format(wrap(old_table), wrap(new_table))
self.execute(command)
self._printer('Renamed {0} to {1}'.format(wrap(old_table), wrap(new_table)))
return old_table, new_table | 0.010327 |
def grind_hash_for_weapon(hashcode):
""" Grinds the given hashcode for a weapon to draw on
the pixelmap. Utilizes the second six characters from the
hashcode."""
weaponlist = init_weapon_list()
# The second six characters of the hash
# control the weapon decision.
weapon_control = hashcode[ASPECT_CONTROL_LEN:(ASPECT_CONTROL_LEN * 2)]
# Decimal value of the hash chunk to map.
hash_dec_value = int(weapon_control, HEX_BASE)
decision = map_decision(MAX_DECISION_VALUE, len(weaponlist), hash_dec_value)
return choose_weapon(decision, weaponlist) | 0.003384 |
def format_string(m, l, capture, is_bytes):
"""Perform a string format."""
for fmt_type, value in capture[1:]:
if fmt_type == FMT_ATTR:
# Attribute
l = getattr(l, value)
elif fmt_type == FMT_INDEX:
# Index
l = l[value]
elif fmt_type == FMT_CONV:
if is_bytes:
# Conversion
if value in ('r', 'a'):
l = repr(l).encode('ascii', 'backslashreplace')
elif value == 's':
# If the object is not string or byte string already
l = _to_bstr(l)
else:
# Conversion
if value == 'a':
l = ascii(l)
elif value == 'r':
l = repr(l)
elif value == 's':
# If the object is not string or byte string already
l = str(l)
elif fmt_type == FMT_SPEC:
# Integers and floats don't have an explicit 's' format type.
if value[3] and value[3] == 's':
if isinstance(l, int): # pragma: no cover
raise ValueError("Unknown format code 's' for object of type 'int'")
if isinstance(l, float): # pragma: no cover
raise ValueError("Unknown format code 's' for object of type 'float'")
# Ensure object is a byte string
l = _to_bstr(l) if is_bytes else str(l)
spec_type = value[1]
if spec_type == '^':
l = l.center(value[2], value[0])
elif spec_type == ">":
l = l.rjust(value[2], value[0])
else:
l = l.ljust(value[2], value[0])
# Make sure the final object is a byte string
return _to_bstr(l) if is_bytes else str(l) | 0.008039 |
def to_xdr_object(self):
"""Creates an XDR Operation object that represents this
:class:`CreateAccount`.
"""
destination = account_xdr_object(self.destination)
create_account_op = Xdr.types.CreateAccountOp(
destination, Operation.to_xdr_amount(self.starting_balance))
self.body.type = Xdr.const.CREATE_ACCOUNT
self.body.createAccountOp = create_account_op
return super(CreateAccount, self).to_xdr_object() | 0.004141 |
def _input_as_lines(self,data):
"""Writes data to tempfile and sets -infile parameter
data -- list of lines, ready to be written to file
"""
if data:
self.Parameters['--in']\
.on(super(Clearcut,self)._input_as_lines(data))
return '' | 0.013289 |
def _update_file(self, seek_to_end=True):
"""Open the file for tailing"""
try:
self.close()
self._file = self.open()
except IOError:
pass
else:
if not self._file:
return
self.active = True
try:
st = os.stat(self._filename)
except EnvironmentError, err:
if err.errno == errno.ENOENT:
self._log_info('file removed')
self.close()
fid = self.get_file_id(st)
if not self._fid:
self._fid = fid
if fid != self._fid:
self._log_info('file rotated')
self.close()
elif seek_to_end:
self._seek_to_end() | 0.002472 |
def close(self):
"""Close a port on dummy_serial."""
if VERBOSE:
_print_out('\nDummy_serial: Closing port\n')
if not self._isOpen:
raise IOError('Dummy_serial: The port is already closed')
self._isOpen = False
self.port = None | 0.009868 |
def compose(self, bbox=None, **kwargs):
"""
Compose the artboard.
See :py:func:`~psd_tools.compose` for available extra arguments.
:param bbox: Viewport tuple (left, top, right, bottom).
:return: :py:class:`PIL.Image`, or `None` if there is no pixel.
"""
from psd_tools.api.composer import compose
return compose(self, bbox=bbox or self.bbox, **kwargs) | 0.004785 |
def patch_namespaced_stateful_set_scale(self, name, namespace, body, **kwargs): # noqa: E501
"""patch_namespaced_stateful_set_scale # noqa: E501
partially update scale of the specified StatefulSet # noqa: E501
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.patch_namespaced_stateful_set_scale(name, namespace, body, async_req=True)
>>> result = thread.get()
:param async_req bool
:param str name: name of the Scale (required)
:param str namespace: object name and auth scope, such as for teams and projects (required)
:param UNKNOWN_BASE_TYPE body: (required)
:param str pretty: If 'true', then the output is pretty printed.
:param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed
:return: V1Scale
If the method is called asynchronously,
returns the request thread.
"""
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.patch_namespaced_stateful_set_scale_with_http_info(name, namespace, body, **kwargs) # noqa: E501
else:
(data) = self.patch_namespaced_stateful_set_scale_with_http_info(name, namespace, body, **kwargs) # noqa: E501
return data | 0.001255 |
def dict2resource(raw, top=None, options=None, session=None):
"""Convert a dictionary into a Jira Resource object.
Recursively walks a dict structure, transforming the properties into attributes
on a new ``Resource`` object of the appropriate type (if a ``self`` link is present)
or a ``PropertyHolder`` object (if no ``self`` link is present).
"""
if top is None:
top = PropertyHolder(raw)
seqs = tuple, list, set, frozenset
for i, j in iteritems(raw):
if isinstance(j, dict):
if 'self' in j:
resource = cls_for_resource(j['self'])(options, session, j)
setattr(top, i, resource)
elif i == 'timetracking':
setattr(top, 'timetracking', TimeTracking(options, session, j))
else:
setattr(
top, i, dict2resource(j, options=options, session=session))
elif isinstance(j, seqs):
seq_list = []
for seq_elem in j:
if isinstance(seq_elem, dict):
if 'self' in seq_elem:
resource = cls_for_resource(seq_elem['self'])(
options, session, seq_elem)
seq_list.append(resource)
else:
seq_list.append(
dict2resource(seq_elem, options=options, session=session))
else:
seq_list.append(seq_elem)
setattr(top, i, seq_list)
else:
setattr(top, i, j)
return top | 0.002513 |
def save(self):
"""Update the configuration file on disk with the current contents of self.contents.
Previous contents are overwritten.
"""
try:
with open(self.path, "w") as f:
f.writelines(self.contents)
except IOError as e:
raise InternalError("Could not write RCFile contents", name=self.name, path=self.path, error_message=str(e)) | 0.009639 |
def _isValidTrigger(block, ch):
"""check if the trigger characters are in the right context,
otherwise running the indenter might be annoying to the user
"""
if ch == "" or ch == "\n":
return True # Explicit align or new line
match = rxUnindent.match(block.text())
return match is not None and \
match.group(3) == "" | 0.010204 |
def queue(self):
"""
Get a queue of notifications
Use it with Python with
"""
queue = NotificationQueue()
self._listeners.add(queue)
yield queue
self._listeners.remove(queue) | 0.008368 |
def addMPCandHumanWealth(self,solution):
'''
Take a solution and add human wealth and the bounding MPCs to it.
Parameters
----------
solution : ConsumerSolution
The solution to this period's consumption-saving problem.
Returns:
----------
solution : ConsumerSolution
The solution to this period's consumption-saving problem, but now
with human wealth and the bounding MPCs.
'''
solution.hNrm = self.hNrmNow
solution.MPCmin = self.MPCminNow
solution.MPCmax = self.MPCmaxEff
return solution | 0.006329 |
def is_directory(value, **kwargs):
"""Indicate whether ``value`` is a directory that exists on the local filesystem.
:param value: The value to evaluate.
:returns: ``True`` if ``value`` is valid, ``False`` if it is not.
:rtype: :class:`bool <python:bool>`
:raises SyntaxError: if ``kwargs`` contains duplicate keyword parameters or duplicates
keyword parameters passed to the underlying validator
"""
try:
value = validators.directory_exists(value, **kwargs)
except SyntaxError as error:
raise error
except Exception:
return False
return True | 0.004862 |
def create_extraction_file(bim_filename, out_prefix):
"""Creates an extraction file (keeping only markers on autosomes).
:param bim_filename: the name of the BIM file.
:param out_prefix: the prefix for the output file.
:type bim_filename: str
:type out_prefix: str
"""
o_file = None
try:
o_file = open(out_prefix + ".to_extract", "w")
except IOError:
raise ProgramError("{}: cannot write file".format(
out_prefix + ".to_extract"
))
# Reading the BIM file and extracts only the markers on autosome
autosomes = set(map(str, range(1, 23)))
nb_markers = 0
header = dict(zip(["chrom", "name", "cm", "pos", "a1", "a2"], range(6)))
with open(bim_filename, "r") as i_file:
for line in i_file:
row = line.rstrip("\r\n").split()
if row[header["chrom"]] in autosomes:
print >>o_file, row[header["name"]]
nb_markers += 1
# Closing the file
o_file.close()
logger.info(" - {:,d} markers will be used for contamination "
"estimation".format(nb_markers)) | 0.000886 |
def decode_chain_list(in_bytes):
"""Convert a list of bytes to a list of strings. Each string is of length mmtf.CHAIN_LEN
:param in_bytes: the input bytes
:return the decoded list of strings"""
bstrings = numpy.frombuffer(in_bytes, numpy.dtype('S' + str(mmtf.utils.constants.CHAIN_LEN)))
return [s.decode("ascii").strip(mmtf.utils.constants.NULL_BYTE) for s in bstrings] | 0.01023 |
def build_parser_for_fileobject_and_desiredtype(self, obj_on_filesystem: PersistedObject, object_type: Type[T],
logger: Logger = None) -> Parser:
"""
Returns the most appropriate parser to use to parse object obj_on_filesystem as an object of type object_type
:param obj_on_filesystem: the filesystem object to parse
:param object_type: the type of object that the parser is expected to produce
:param logger:
:return:
"""
pass | 0.012868 |
def top(num_processes=5, interval=3):
'''
Return a list of top CPU consuming processes during the interval.
num_processes = return the top N CPU consuming processes
interval = the number of seconds to sample CPU usage over
CLI Examples:
.. code-block:: bash
salt '*' ps.top
salt '*' ps.top 5 10
'''
result = []
start_usage = {}
for pid in psutil.pids():
try:
process = psutil.Process(pid)
user, system = process.cpu_times()
except ValueError:
user, system, _, _ = process.cpu_times()
except psutil.NoSuchProcess:
continue
start_usage[process] = user + system
time.sleep(interval)
usage = set()
for process, start in six.iteritems(start_usage):
try:
user, system = process.cpu_times()
except ValueError:
user, system, _, _ = process.cpu_times()
except psutil.NoSuchProcess:
continue
now = user + system
diff = now - start
usage.add((diff, process))
for idx, (diff, process) in enumerate(reversed(sorted(usage))):
if num_processes and idx >= num_processes:
break
if not _get_proc_cmdline(process):
cmdline = _get_proc_name(process)
else:
cmdline = _get_proc_cmdline(process)
info = {'cmd': cmdline,
'user': _get_proc_username(process),
'status': _get_proc_status(process),
'pid': _get_proc_pid(process),
'create_time': _get_proc_create_time(process),
'cpu': {},
'mem': {},
}
for key, value in six.iteritems(process.cpu_times()._asdict()):
info['cpu'][key] = value
for key, value in six.iteritems(process.memory_info()._asdict()):
info['mem'][key] = value
result.append(info)
return result | 0.001025 |
def columbus_day(year, country='usa'):
'''in USA: 2nd Monday in Oct
Elsewhere: Oct 12'''
if country == 'usa':
return nth_day_of_month(2, MON, OCT, year)
else:
return (year, OCT, 12) | 0.00463 |
def load_dialect_impl(self, dialect): # type: (DefaultDialect) -> TypeEngine
"""Select impl by dialect."""
if self.__use_json(dialect):
return dialect.type_descriptor(self.__json_type)
return dialect.type_descriptor(sqlalchemy.UnicodeText) | 0.007246 |
def AddLogFileOptions(self, argument_group):
"""Adds the log file option to the argument group.
Args:
argument_group (argparse._ArgumentGroup): argparse argument group.
"""
argument_group.add_argument(
'--logfile', '--log_file', '--log-file', action='store',
metavar='FILENAME', dest='log_file', type=str, default='', help=(
'Path of the file in which to store log messages, by default '
'this file will be named: "{0:s}-YYYYMMDDThhmmss.log.gz". Note '
'that the file will be gzip compressed if the extension is '
'".gz".').format(self.NAME)) | 0.00159 |
def gaussian1d_moments(data, mask=None):
"""
Estimate 1D Gaussian parameters from the moments of 1D data.
This function can be useful for providing initial parameter values
when fitting a 1D Gaussian to the ``data``.
Parameters
----------
data : array_like (1D)
The 1D array.
mask : array_like (1D bool), optional
A boolean mask, with the same shape as ``data``, where a `True`
value indicates the corresponding element of ``data`` is masked.
Returns
-------
amplitude, mean, stddev : float
The estimated parameters of a 1D Gaussian.
"""
if np.any(~np.isfinite(data)):
data = np.ma.masked_invalid(data)
warnings.warn('Input data contains input values (e.g. NaNs or infs), '
'which were automatically masked.', AstropyUserWarning)
else:
data = np.ma.array(data)
if mask is not None and mask is not np.ma.nomask:
mask = np.asanyarray(mask)
if data.shape != mask.shape:
raise ValueError('data and mask must have the same shape.')
data.mask |= mask
data.fill_value = 0.
data = data.filled()
x = np.arange(data.size)
x_mean = np.sum(x * data) / np.sum(data)
x_stddev = np.sqrt(abs(np.sum(data * (x - x_mean)**2) / np.sum(data)))
amplitude = np.ptp(data)
return amplitude, x_mean, x_stddev | 0.000717 |
def plot_gaussian_2D(mu, lmbda, color='b', centermarker=True,label='',alpha=1.,ax=None,artists=None):
'''
Plots mean and cov ellipsoid into current axes. Must be 2D. lmbda is a covariance matrix.
'''
assert len(mu) == 2
ax = ax if ax else plt.gca()
# TODO use artists!
t = np.hstack([np.arange(0,2*np.pi,0.01),0])
circle = np.vstack([np.sin(t),np.cos(t)])
ellipse = np.dot(np.linalg.cholesky(lmbda),circle)
if artists is None:
point = ax.scatter([mu[0]],[mu[1]],marker='D',color=color,s=4,alpha=alpha) \
if centermarker else None
line, = ax.plot(ellipse[0,:] + mu[0], ellipse[1,:] + mu[1],linestyle='-',
linewidth=2,color=color,label=label,alpha=alpha)
else:
line, point = artists
if centermarker:
point.set_offsets(np.atleast_2d(mu))
line.set_xdata(ellipse[0,:] + mu[0])
line.set_ydata(ellipse[1,:] + mu[1])
line.set_alpha(alpha)
line.set_color(color)
return line, point | 0.027158 |
def eagerload_includes(self, query, qs):
"""Use eagerload feature of sqlalchemy to optimize data retrieval for include querystring parameter
:param Query query: sqlalchemy queryset
:param QueryStringManager qs: a querystring manager to retrieve information from url
:return Query: the query with includes eagerloaded
"""
for include in qs.include:
joinload_object = None
if '.' in include:
current_schema = self.resource.schema
for obj in include.split('.'):
try:
field = get_model_field(current_schema, obj)
except Exception as e:
raise InvalidInclude(str(e))
if joinload_object is None:
joinload_object = joinedload(field)
else:
joinload_object = joinload_object.joinedload(field)
related_schema_cls = get_related_schema(current_schema, obj)
if isinstance(related_schema_cls, SchemaABC):
related_schema_cls = related_schema_cls.__class__
else:
related_schema_cls = class_registry.get_class(related_schema_cls)
current_schema = related_schema_cls
else:
try:
field = get_model_field(self.resource.schema, include)
except Exception as e:
raise InvalidInclude(str(e))
joinload_object = joinedload(field)
query = query.options(joinload_object)
return query | 0.00355 |
def pad_repeat_border(data, padwidth):
"""
Similar to `pad`, except the border value from ``data`` is used to pad.
Parameters
----------
data : ndarray
Numpy array of any dimension and type.
padwidth : int or tuple
If int, it will pad using this amount at the beginning and end of all
dimensions. If it is a tuple (of same length as `ndim`), then the
padding amount will be specified per axis.
Examples
--------
>>> import deepdish as dd
>>> import numpy as np
Pad an array by repeating its borders:
>>> shape = (3, 4)
>>> x = np.arange(np.prod(shape)).reshape(shape)
>>> dd.util.pad_repeat_border(x, 2)
array([[ 0, 0, 0, 1, 2, 3, 3, 3],
[ 0, 0, 0, 1, 2, 3, 3, 3],
[ 0, 0, 0, 1, 2, 3, 3, 3],
[ 4, 4, 4, 5, 6, 7, 7, 7],
[ 8, 8, 8, 9, 10, 11, 11, 11],
[ 8, 8, 8, 9, 10, 11, 11, 11],
[ 8, 8, 8, 9, 10, 11, 11, 11]])
"""
data = np.asarray(data)
shape = data.shape
if isinstance(padwidth, int):
padwidth = (padwidth,)*len(shape)
padded_shape = tuple(map(lambda ix: ix[1]+padwidth[ix[0]]*2,
enumerate(shape)))
new_data = np.empty(padded_shape, dtype=data.dtype)
new_data[[slice(w, -w) if w > 0 else slice(None) for w in padwidth]] = data
for i, pw in enumerate(padwidth):
if pw > 0:
selection = [slice(None)] * data.ndim
selection2 = [slice(None)] * data.ndim
# Lower boundary
selection[i] = slice(0, pw)
selection2[i] = slice(pw, pw+1)
new_data[tuple(selection)] = new_data[tuple(selection2)]
# Upper boundary
selection[i] = slice(-pw, None)
selection2[i] = slice(-pw-1, -pw)
new_data[tuple(selection)] = new_data[tuple(selection2)]
return new_data | 0.000513 |
def sort_dictionary_list(dict_list, sort_key):
"""
sorts a list of dictionaries based on the value of the sort_key
dict_list - a list of dictionaries
sort_key - a string that identifies the key to sort the dictionaries with.
Test sorting a list of dictionaries:
>>> sort_dictionary_list([{'b' : 1, 'value' : 2}, {'c' : 2, 'value' : 3}, {'a' : 3, 'value' : 1}], 'value')
[{'a': 3, 'value': 1}, {'b': 1, 'value': 2}, {'c': 2, 'value': 3}]
"""
if not dict_list or len(dict_list) == 0:
return dict_list
dict_list.sort(key=itemgetter(sort_key))
return dict_list | 0.003231 |
def _atomicModification(func):
"""Decorator
Make document modification atomic
"""
def wrapper(*args, **kwargs):
self = args[0]
with self._qpart:
func(*args, **kwargs)
return wrapper | 0.007663 |
def stop_NoteContainer(self, nc, channel=1):
"""Stop playing the notes in NoteContainer nc."""
self.notify_listeners(self.MSG_PLAY_NC, {'notes': nc,
'channel': channel})
if nc is None:
return True
for note in nc:
if not self.stop_Note(note, channel):
return False
return True | 0.008174 |
def less_naive(gold_schemes):
"""find 'less naive' baseline (most common scheme of a given length in subcorpus)"""
best_schemes = defaultdict(lambda: defaultdict(int))
for g in gold_schemes:
best_schemes[len(g)][tuple(g)] += 1
for i in best_schemes:
best_schemes[i] = tuple(max(best_schemes[i].items(), key=lambda x: x[1])[0])
naive_schemes = []
for g in gold_schemes:
naive_schemes.append(best_schemes[len(g)])
return naive_schemes | 0.006173 |
def update_metadata_queue(self, agent: BaseAgent):
"""
Adds a new instance of AgentMetadata into the `agent_metadata_queue` using `agent` data.
:param agent: An instance of an agent.
"""
pids = {os.getpid(), *agent.get_extra_pids()}
helper_process_request = agent.get_helper_process_request()
self.agent_metadata_queue.put(AgentMetadata(self.index, self.name, self.team, pids, helper_process_request)) | 0.008715 |
def end(self):
"""End access to the SD interface and close the HDF file.
Args::
no argument
Returns::
None
The instance should not be used afterwards.
The 'end()' method is implicitly called when the
SD instance is deleted.
C library equivalent : SDend
"""
status = _C.SDend(self._id)
_checkErr('end', status, "cannot execute")
self._id = None | 0.003937 |
def getPythonVarName(name):
"""Get the python variable name
"""
return SUB_REGEX.sub('', name.replace('+', '_').replace('-', '_').replace('.', '_').replace(' ', '').replace('/', '_')).upper() | 0.009852 |
def bury(self, priority=None):
"""Bury this job."""
if self.reserved:
self.conn.bury(self.jid, priority or self._priority())
self.reserved = False | 0.010753 |
def get_consensus_at(self, block_id):
"""
Get the consensus hash at a given block.
Return the consensus hash if we have one for this block.
Return None if we don't
"""
query = 'SELECT consensus_hash FROM snapshots WHERE block_id = ?;'
args = (block_id,)
con = self.db_open(self.impl, self.working_dir)
rows = self.db_query_execute(con, query, args, verbose=False)
res = None
for r in rows:
res = r['consensus_hash']
con.close()
return res | 0.003591 |
def generate_code_challenge(verifier):
"""
source: https://github.com/openstack/deb-python-oauth2client
Creates a 'code_challenge' as described in section 4.2 of RFC 7636
by taking the sha256 hash of the verifier and then urlsafe
base64-encoding it.
Args:
verifier: bytestring, representing a code_verifier as generated by
generate_code_verifier().
Returns:
Bytestring, representing a urlsafe base64-encoded sha256 hash digest,
without '=' padding.
"""
digest = hashlib.sha256(verifier.encode('utf-8')).digest()
return base64.urlsafe_b64encode(digest).rstrip(b'=').decode('utf-8') | 0.001515 |
def encode_sentence(obj):
"""Encode a single sentence."""
warnings.warn("deprecated. Please use bioc.biocxml.encoder.encode_sentence", DeprecationWarning)
return bioc.biocxml.encoder.encode_sentence(obj) | 0.009174 |
def read_raster_no_crs(input_file, indexes=None, gdal_opts=None):
"""
Wrapper function around rasterio.open().read().
Parameters
----------
input_file : str
Path to file
indexes : int or list
Band index or list of band indexes to be read.
Returns
-------
MaskedArray
Raises
------
FileNotFoundError if file cannot be found.
"""
with warnings.catch_warnings():
warnings.simplefilter("ignore")
try:
with rasterio.Env(
**get_gdal_options(
gdal_opts, is_remote=path_is_remote(input_file, s3=True)
)
):
with rasterio.open(input_file, "r") as src:
return src.read(indexes=indexes, masked=True)
except RasterioIOError as e:
for i in ("does not exist in the file system", "No such file or directory"):
if i in str(e):
raise FileNotFoundError("%s not found" % input_file)
else:
raise | 0.001885 |
def get_privkey(self, address: AddressHex, password: str) -> PrivateKey:
"""Find the keystore file for an account, unlock it and get the private key
Args:
address: The Ethereum address for which to find the keyfile in the system
password: Mostly for testing purposes. A password can be provided
as the function argument here. If it's not then the
user is interactively queried for one.
Returns
The private key associated with the address
"""
address = add_0x_prefix(address).lower()
if not self.address_in_keystore(address):
raise ValueError('Keystore file not found for %s' % address)
with open(self.accounts[address]) as data_file:
data = json.load(data_file)
acc = Account(data, password, self.accounts[address])
return acc.privkey | 0.004329 |
def native(self):
"""
The native Python datatype representation of this value
:return:
An integer or None
"""
if self.contents is None:
return None
if self._native is None:
self._native = self.__int__()
if self._map is not None and self._native in self._map:
self._native = self._map[self._native]
return self._native | 0.004545 |
def get_remainder_set(self, j):
"""Return the set of children with indices less than j of all ancestors
of j. The set C from (arXiv:1701.07072).
:param int j: fermionic site index
:return: children of j-ancestors, with indices less than j
:rtype: list(FenwickNode)
"""
result = []
ancestors = self.get_update_set(j)
# This runs in O(log(N)log(N)) where N is the number of qubits.
for a in ancestors:
for c in a.children:
if c.index < j:
result.append(c)
return result | 0.003295 |
def parse_expression(val, acceptable_types, name=None, raise_type=ValueError):
"""Attempts to parse the given `val` as a python expression of the specified `acceptable_types`.
:param string val: A string containing a python expression.
:param acceptable_types: The acceptable types of the parsed object.
:type acceptable_types: type|tuple of types. The tuple may be nested; ie anything `isinstance`
accepts.
:param string name: An optional logical name for the value being parsed; ie if the literal val
represents a person's age, 'age'.
:param type raise_type: The type of exception to raise for all failures; ValueError by default.
:raises: If `val` is not a valid python literal expression or it is but evaluates to an object
that is not a an instance of one of the `acceptable_types`.
"""
def format_type(typ):
return typ.__name__
if not isinstance(val, string_types):
raise raise_type('The raw `val` is not a string. Given {} of type {}.'
.format(val, format_type(type(val))))
def get_name():
return repr(name) if name else 'value'
def format_raw_value():
lines = val.splitlines()
for line_number in range(0, len(lines)):
lines[line_number] = "{line_number:{width}}: {line}".format(
line_number=line_number + 1,
line=lines[line_number],
width=len(str(len(lines))))
return '\n'.join(lines)
try:
parsed_value = eval(val)
except Exception as e:
raise raise_type(dedent("""\
The {name} cannot be evaluated as a literal expression: {error}
Given raw value:
{value}
""".format(name=get_name(),
error=e,
value=format_raw_value())))
if not isinstance(parsed_value, acceptable_types):
def iter_types(types):
if isinstance(types, type):
yield types
elif isinstance(types, tuple):
for item in types:
for typ in iter_types(item):
yield typ
else:
raise ValueError('The given acceptable_types is not a valid type (tuple): {}'
.format(acceptable_types))
raise raise_type(dedent("""\
The {name} is not of the expected type(s): {types}:
Given the following raw value that evaluated to type {type}:
{value}
""".format(name=get_name(),
types=', '.join(format_type(t) for t in iter_types(acceptable_types)),
type=format_type(type(parsed_value)),
value=format_raw_value())))
return parsed_value | 0.008494 |
def _eval_wrapper(self, fit_key, q, chiA, chiB, **kwargs):
"""Evaluates the surfinBH7dq2 model.
"""
chiA = np.array(chiA)
chiB = np.array(chiB)
# Warn/Exit if extrapolating
allow_extrap = kwargs.pop('allow_extrap', False)
self._check_param_limits(q, chiA, chiB, allow_extrap)
omega0 = kwargs.pop('omega0', None)
PN_approximant = kwargs.pop('PN_approximant', 'SpinTaylorT4')
PN_dt = kwargs.pop('PN_dt', 0.1)
PN_spin_order = kwargs.pop('PN_spin_order', 7)
PN_phase_order = kwargs.pop('PN_phase_order', 7)
omega_switch = kwargs.pop('omega_switch', 0.018)
self._check_unused_kwargs(kwargs)
if omega0 is None:
# If omega0 is given, assume chiA, chiB are the coorbital frame
# spins at t=-100 M.
x = np.concatenate(([q], chiA, chiB))
else:
# If omega0 is given, evolve the spins from omega0
# to t = -100 M from the peak.
chiA_coorb_fitnode, chiB_coorb_fitnode, quat_fitnode, \
orbphase_fitnode \
= self._evolve_spins(q, chiA, chiB, omega0,
PN_approximant, PN_dt, PN_spin_order,
PN_phase_order, omega_switch)
# x should contain coorbital frame spins at t=-100M
x = np.concatenate(([q], chiA_coorb_fitnode, chiB_coorb_fitnode))
def eval_vector_fit(x, fit_key):
res = self._evaluate_fits(x, fit_key)
fit_val = res.T[0]
fit_err = res.T[1]
if omega0 is not None:
# If spins were given in inertial frame at omega0,
# transform vectors and errors back to the same frame.
fit_val = utils.transform_vector_coorb_to_inertial(fit_val,
orbphase_fitnode, quat_fitnode)
fit_err = utils.transform_error_coorb_to_inertial(fit_val,
fit_err, orbphase_fitnode, quat_fitnode)
return fit_val, fit_err
if fit_key == 'mf' or fit_key == 'all':
mf, mf_err = self._evaluate_fits(x, 'mf')
if fit_key == 'mf':
return mf, mf_err
if fit_key == 'chif' or fit_key == 'all':
chif, chif_err = eval_vector_fit(x, 'chif')
if fit_key == 'chif':
return chif, chif_err
if fit_key == 'vf' or fit_key == 'all':
vf, vf_err = eval_vector_fit(x, 'vf')
if fit_key == 'vf':
return vf, vf_err
if fit_key == 'all':
return mf, chif, vf, mf_err, chif_err, vf_err | 0.003019 |
def random_string(length=8, charset=None):
'''
Generates a string with random characters. If no charset is specified, only
letters and digits are used.
Args:
length (int) length of the returned string
charset (string) list of characters to choose from
Returns:
(str) with random characters from charset
Raises:
-
'''
if length < 1:
raise ValueError('Length must be > 0')
if not charset:
charset = string.letters + string.digits
return ''.join(random.choice(charset) for unused in xrange(length)) | 0.001712 |
def subscribe_sns_topic_to_sqs(self, region):
"""Subscribe SQS to the SNS topic. Returns the ARN of the SNS Topic subscribed
Args:
region (`str`): Name of the AWS region
Returns:
`str`
"""
sns = self.session.resource('sns', region_name=region)
topic = sns.Topic('arn:aws:sns:{}:{}:{}'.format(region, self.account.account_number, self.topic_name))
topic.subscribe(Protocol='sqs', Endpoint=self.sqs_queue)
auditlog(
event='cloudtrail.subscribe_sns_topic_to_sqs',
actor=self.ns,
data={
'account': self.account.account_name,
'region': region
}
)
return topic.attributes['TopicArn'] | 0.005222 |
def maskQuality(self, umi, umi_quals):
'''mask low quality bases and return masked umi'''
masked_umi = mask_umi(umi, umi_quals,
self.quality_encoding,
self.quality_filter_mask)
if masked_umi != umi:
self.read_counts['UMI masked'] += 1
return masked_umi
else:
return umi | 0.005038 |
def tree(self):
"""Tree with branch lengths in codon substitutions per site.
The tree is a `Bio.Phylo.BaseTree.Tree` object.
This is the current tree after whatever optimizations have
been performed so far.
"""
bs = self.model.branchScale
for node in self._tree.find_clades():
if node != self._tree.root:
node.branch_length = self.t[self.name_to_nodeindex[node]] * bs
return self._tree | 0.004175 |
def PCO_protocol_dispatcher(s):
"""Choose the correct PCO element."""
proto_num = orb(s[0]) * 256 + orb(s[1])
cls = PCO_PROTOCOL_CLASSES.get(proto_num, Raw)
return cls(s) | 0.005376 |
def append_line(filename, **line):
"""Safely (i.e. with locking) append a line to
the given file, serialized as JSON.
"""
global lock
data = json.dumps(line, separators=(',', ':')) + '\n'
with lock:
with file(filename, 'a') as fp:
fp.seek(0, SEEK_END)
fp.write(data) | 0.003096 |
def prt_results(self, goea_results):
"""Print GOEA results to the screen or to a file."""
# objaart = self.prepgrp.get_objaart(goea_results) if self.prepgrp is not None else None
if self.args.outfile is None:
self._prt_results(goea_results)
else:
# Users can print to both tab-separated file and xlsx file in one run.
outfiles = self.args.outfile.split(",")
grpwr = self.prepgrp.get_objgrpwr(goea_results) if self.prepgrp else None
if grpwr is None:
self.prt_outfiles_flat(goea_results, outfiles)
else:
grpwr.prt_outfiles_grouped(outfiles) | 0.007407 |
def preprocess_incoming_content(content, encrypt_func, max_size_bytes):
"""
Apply preprocessing steps to file/notebook content that we're going to
write to the database.
Applies ``encrypt_func`` to ``content`` and checks that the result is
smaller than ``max_size_bytes``.
"""
encrypted = encrypt_func(content)
if max_size_bytes != UNLIMITED and len(encrypted) > max_size_bytes:
raise FileTooLarge()
return encrypted | 0.002169 |
def delete(self, request, *args, **kwargs):
"""Delete auth token when `delete` request was issued."""
# Logic repeated from DRF because one cannot easily reuse it
auth = get_authorization_header(request).split()
if not auth or auth[0].lower() != b'token':
return response.Response(status=status.HTTP_400_BAD_REQUEST)
if len(auth) == 1:
msg = 'Invalid token header. No credentials provided.'
return response.Response(msg, status=status.HTTP_400_BAD_REQUEST)
elif len(auth) > 2:
msg = 'Invalid token header. Token string should not contain spaces.'
return response.Response(msg, status=status.HTTP_400_BAD_REQUEST)
try:
token = self.model.objects.get(key=auth[1])
except self.model.DoesNotExist:
pass
else:
token.delete()
signals.user_logged_out.send(
type(self),
user=token.user,
request=request,
)
return response.Response(status=status.HTTP_204_NO_CONTENT) | 0.002708 |
def _confirm_pos(self, pos):
"""look up widget for pos and default to None"""
candidate = None
if self._get_node(self._treelist, pos) is not None:
candidate = pos
return candidate | 0.008969 |
async def _quit(self):
"""Quits the bot."""
await self.bot.responses.failure(message="Bot shutting down")
await self.bot.logout() | 0.013072 |
def setOverlayAlpha(self, ulOverlayHandle, fAlpha):
"""Sets the alpha of the overlay quad. Use 1.0 for 100 percent opacity to 0.0 for 0 percent opacity."""
fn = self.function_table.setOverlayAlpha
result = fn(ulOverlayHandle, fAlpha)
return result | 0.010714 |
def publish(self, topic="/controller", qos=0, payload=None):
"""
publish(self, topic, payload=None, qos=0, retain=False)
Returns a tuple (result, mid), where result is MQTT_ERR_SUCCESS to
indicate success or MQTT_ERR_NO_CONN if the client is not currently
connected. mid is the message ID for the publish request. The mid
value can be used to track the publish request by checking against the
mid argument in the on_publish() callback if it is defined.
"""
result = self.client.publish(topic,
payload=json.dumps(payload),
qos=qos)
if result[0] == mqtt.MQTT_ERR_NO_CONN:
raise RuntimeError("No connection")
return result[1] | 0.002509 |
def runSearchFeatures(self, request):
"""
Returns a SearchFeaturesResponse for the specified
SearchFeaturesRequest object.
:param request: JSON string representing searchFeaturesRequest
:return: JSON string representing searchFeatureResponse
"""
return self.runSearchRequest(
request, protocol.SearchFeaturesRequest,
protocol.SearchFeaturesResponse,
self.featuresGenerator) | 0.004292 |
def random_string(length):
"""
Return a pseudo-random string of specified length.
"""
valid_chars = string_ascii_letters + string_digits
return ''.join(random.choice(valid_chars) for i in range(length)) | 0.004484 |
def _cancel_send_messages(self, d):
"""Cancel a `send_messages` request
First check if the request is in a waiting batch, of so, great, remove
it from the batch. If it's not found, we errback() the deferred and
the downstream processing steps take care of aborting further
processing.
We check if there's a current _batch_send_d to determine where in the
chain we were (getting partitions, or already sent request to Kafka)
and errback differently.
"""
# Is the request in question in an unsent batch?
for req in self._batch_reqs:
if req.deferred == d:
# Found the request, remove it and return.
msgs = req.messages
self._waitingMsgCount -= len(msgs)
for m in (_m for _m in msgs if _m is not None):
self._waitingByteCount -= len(m)
# This _should_ be safe as we abort the iteration upon removal
self._batch_reqs.remove(req)
d.errback(CancelledError(request_sent=False))
return
# If it wasn't found in the unsent batch. We just rely on the
# downstream processing of the request to check if the deferred
# has been called and skip further processing for this request
# Errback the deferred with whether or not we sent the request
# to Kafka already
d.errback(
CancelledError(request_sent=(self._batch_send_d is not None)))
return | 0.001294 |
def convert_padding(builder, layer, input_names, output_names, keras_layer):
"""
Convert padding layer from keras to coreml.
Keras only supports zero padding at this time.
Parameters
----------
keras_layer: layer
A keras layer object.
builder: NeuralNetworkBuilder
A neural network builder object.
"""
_check_data_format(keras_layer)
# Get input and output names
input_name, output_name = (input_names[0], output_names[0])
is_1d = isinstance(keras_layer, _keras.layers.ZeroPadding1D)
padding = keras_layer.padding
top = left = bottom = right = 0
if is_1d:
if type(padding) is int:
left = right = padding
elif type(padding) is tuple:
if type(padding[0]) is int:
left, right = padding
elif type(padding[0]) is tuple and len(padding[0]) == 2:
left, right = padding[0]
else:
raise ValueError("Unrecognized padding option: %s" % (str(padding)))
else:
raise ValueError("Unrecognized padding option: %s" % (str(padding)))
else:
if type(padding) is int:
top = left = bottom = right = padding
elif type(padding) is tuple:
if type(padding[0]) is int:
top, left = padding
bottom, right = padding
elif type(padding[0]) is tuple:
top, bottom = padding[0]
left, right = padding[1]
else:
raise ValueError("Unrecognized padding option: %s" % (str(padding)))
else:
raise ValueError("Unrecognized padding option: %s" % (str(padding)))
# Now add the layer
builder.add_padding(name = layer,
left = left, right=right, top=top, bottom=bottom, value = 0,
input_name = input_name, output_name=output_name
) | 0.008448 |
def revcomp(sequence):
"returns reverse complement of a string"
sequence = sequence[::-1].strip()\
.replace("A", "t")\
.replace("T", "a")\
.replace("C", "g")\
.replace("G", "c").upper()
return sequence | 0.00304 |
def filter(args):
"""
%prog filter gffile > filtered.gff
Filter the gff file based on criteria below:
(1) feature attribute values: [Identity, Coverage].
You can get this type of gff by using gmap
$ gmap -f 2 ....
(2) Total bp length of child features
"""
p = OptionParser(filter.__doc__)
p.add_option("--type", default="mRNA",
help="The feature to scan for the attributes [default: %default]")
g1 = OptionGroup(p, "Filter by identity/coverage attribute values")
g1.add_option("--id", default=95, type="float",
help="Minimum identity [default: %default]")
g1.add_option("--coverage", default=90, type="float",
help="Minimum coverage [default: %default]")
g1.add_option("--nocase", default=False, action="store_true",
help="Case insensitive lookup of attribute names [default: %default]")
p.add_option_group(g1)
g2 = OptionGroup(p, "Filter by child feature bp length")
g2.add_option("--child_ftype", default=None, type="str",
help="Child featuretype to consider")
g2.add_option("--child_bp", default=None, type="int",
help="Filter by total bp of children of chosen ftype")
p.add_option_group(g2)
p.set_outfile()
opts, args = p.parse_args(args)
otype, oid, ocov = opts.type, opts.id, opts.coverage
cftype, clenbp = opts.child_ftype, opts.child_bp
id_attr, cov_attr = "Identity", "Coverage"
if opts.nocase:
id_attr, cov_attr = id_attr.lower(), cov_attr.lower()
if len(args) != 1:
sys.exit(not p.print_help())
gffile, = args
gffdb = make_index(gffile)
bad = set()
ptype = None
for g in gffdb.features_of_type(otype, order_by=('seqid', 'start')):
if not ptype:
parent = list(gffdb.parents(g))
ptype = parent[0].featuretype \
if len(parent) > 0 else otype
if cftype and clenbp:
if gffdb.children_bp(g, child_featuretype=cftype) < clenbp:
bad.add(g.id)
elif oid and ocov:
identity = float(g.attributes[id_attr][0])
coverage = float(g.attributes[cov_attr][0])
if identity < oid or coverage < ocov:
bad.add(g.id)
logging.debug("{0} bad accns marked.".format(len(bad)))
fw = must_open(opts.outfile, "w")
for g in gffdb.features_of_type(ptype, order_by=('seqid', 'start')):
if ptype != otype:
feats = list(gffdb.children(g, featuretype=otype, order_by=('start')))
ok_feats = [f for f in feats if f.id not in bad]
if len(ok_feats) > 0:
print(g, file=fw)
for feat in ok_feats:
print(feat, file=fw)
for child in gffdb.children(feat, order_by=('start')):
print(child, file=fw)
else:
if g.id not in bad:
print(g, file=fw)
for child in gffdb.children(g, order_by=('start')):
print(child, file=fw)
fw.close() | 0.002895 |
def aside_view_declaration(self, view_name):
"""
Find and return a function object if one is an aside_view for the given view_name
Aside methods declare their view provision via @XBlockAside.aside_for(view_name)
This function finds those declarations for a block.
Arguments:
view_name (string): the name of the view requested.
Returns:
either the function or None
"""
if view_name in self._combined_asides: # pylint: disable=unsupported-membership-test
return getattr(self, self._combined_asides[view_name]) # pylint: disable=unsubscriptable-object
else:
return None | 0.008683 |
def ls(dataset_uri):
"""
List the overlays in the dataset.
"""
dataset = dtoolcore.DataSet.from_uri(dataset_uri)
for overlay_name in dataset.list_overlay_names():
click.secho(overlay_name) | 0.00463 |
def get_shape(self, ds_id, ds_info):
"""Return data array shape for item specified.
"""
var_path = ds_info.get('file_key', '{}'.format(ds_id.name))
if var_path + '/shape' not in self:
# loading a scalar value
shape = 1
else:
shape = self[var_path + "/shape"]
if "index" in ds_info:
shape = shape[1:]
if "pressure_index" in ds_info:
shape = shape[:-1]
return shape | 0.003976 |
def _get(self, end_point, params=None, **kwargs):
"""Send a HTTP GET request to a Todoist API end-point.
:param end_point: The Todoist API end-point.
:type end_point: str
:param params: The required request parameters.
:type params: dict
:param kwargs: Any optional parameters.
:type kwargs: dict
:return: The HTTP response to the request.
:rtype: :class:`requests.Response`
"""
return self._request(requests.get, end_point, params, **kwargs) | 0.003766 |
def categorize_by_attr(self, attribute):
'''
Function to categorize a FileList by a File object
attribute (eg. 'segment', 'ifo', 'description').
Parameters
-----------
attribute : string
File object attribute to categorize FileList
Returns
--------
keys : list
A list of values for an attribute
groups : list
A list of FileLists
'''
# need to sort FileList otherwise using groupby without sorting does
# 'AAABBBCCDDAABB' -> ['AAA','BBB','CC','DD','AA','BB']
# and using groupby with sorting does
# 'AAABBBCCDDAABB' -> ['AAAAA','BBBBB','CC','DD']
flist = sorted(self, key=attrgetter(attribute), reverse=True)
# use groupby to create lists
groups = []
keys = []
for k, g in groupby(flist, attrgetter(attribute)):
groups.append(FileList(g))
keys.append(k)
return keys, groups | 0.001996 |
def _make_input(self, action, old_quat):
"""
Helper function that returns a dictionary with keys dpos, rotation from a raw input
array. The first three elements are taken to be displacement in position, and a
quaternion indicating the change in rotation with respect to @old_quat.
"""
return {
"dpos": action[:3],
# IK controller takes an absolute orientation in robot base frame
"rotation": T.quat2mat(T.quat_multiply(old_quat, action[3:7])),
} | 0.007449 |
def _create_select_window_handler(self, window):
" Return a mouse handler that selects the given window when clicking. "
def handler(mouse_event):
if mouse_event.event_type == MouseEventType.MOUSE_DOWN:
self.pymux.arrangement.set_active_window(window)
self.pymux.invalidate()
else:
return NotImplemented # Event not handled here.
return handler | 0.004535 |
def service(self, service):
"""
Sets the service of this TrustedCertificateInternalResp.
Service name where the certificate is to be used.
:param service: The service of this TrustedCertificateInternalResp.
:type: str
"""
if service is None:
raise ValueError("Invalid value for `service`, must not be `None`")
allowed_values = ["lwm2m", "bootstrap"]
if service not in allowed_values:
raise ValueError(
"Invalid value for `service` ({0}), must be one of {1}"
.format(service, allowed_values)
)
self._service = service | 0.003003 |
def get_stp_mst_detail_output_msti_port_auto_edge(self, **kwargs):
"""Auto Generated Code
"""
config = ET.Element("config")
get_stp_mst_detail = ET.Element("get_stp_mst_detail")
config = get_stp_mst_detail
output = ET.SubElement(get_stp_mst_detail, "output")
msti = ET.SubElement(output, "msti")
instance_id_key = ET.SubElement(msti, "instance-id")
instance_id_key.text = kwargs.pop('instance_id')
port = ET.SubElement(msti, "port")
auto_edge = ET.SubElement(port, "auto-edge")
auto_edge.text = kwargs.pop('auto_edge')
callback = kwargs.pop('callback', self._callback)
return callback(config) | 0.002837 |
def kp_pan_set(self, viewer, event, data_x, data_y, msg=True):
"""Sets the pan position under the cursor."""
if self.canpan:
self._panset(viewer, data_x, data_y, msg=msg)
return True | 0.009174 |
def com_google_fonts_check_metadata_match_name_familyname(family_metadata, font_metadata):
"""METADATA.pb: Check font name is the same as family name."""
if font_metadata.name != family_metadata.name:
yield FAIL, ("METADATA.pb: {}: Family name \"{}\""
" does not match"
" font name: \"{}\"").format(font_metadata.filename,
family_metadata.name,
font_metadata.name)
else:
yield PASS, "Font name is the same as family name." | 0.008897 |
def getCountry(self, default=None):
"""Return the Country from the Physical or Postal Address
"""
physical_address = self.getPhysicalAddress().get("country", default)
postal_address = self.getPostalAddress().get("country", default)
return physical_address or postal_address | 0.00639 |
def _read_hdr_file(ktlx_file):
"""Reads header of one KTLX file.
Parameters
----------
ktlx_file : Path
name of one of the ktlx files inside the directory (absolute path)
Returns
-------
dict
dict with information about the file
Notes
-----
p.3: says long, but python-long requires 8 bytes, so we use f.read(4)
GUID is correct, BUT little/big endian problems somewhere
"""
with ktlx_file.open('rb') as f:
hdr = {}
assert f.tell() == 0
hdr['file_guid'] = hexlify(f.read(16))
hdr['file_schema'], = unpack('<H', f.read(2))
if not hdr['file_schema'] in (1, 3, 7, 8, 9):
raise NotImplementedError('Reading header not implemented for ' +
'file_schema ' + str(hdr['file_schema']))
hdr['base_schema'], = unpack('<H', f.read(2))
if not hdr['base_schema'] == 1: # p.3: base_schema 0 is rare, I think
raise NotImplementedError('Reading header not implemented for ' +
'base_schema ' + str(hdr['base_schema']))
hdr['creation_time'] = datetime.fromtimestamp(unpack('<i',
f.read(4))[0])
hdr['patient_id'], = unpack('<i', f.read(4))
hdr['study_id'], = unpack('<i', f.read(4))
hdr['pat_last_name'] = _make_str(unpack('c' * 80, f.read(80)))
hdr['pat_first_name'] = _make_str(unpack('c' * 80, f.read(80)))
hdr['pat_middle_name'] = _make_str(unpack('c' * 80, f.read(80)))
hdr['patient_id'] = _make_str(unpack('c' * 80, f.read(80)))
assert f.tell() == 352
if hdr['file_schema'] >= 7:
hdr['sample_freq'], = unpack('<d', f.read(8))
n_chan, = unpack('<i', f.read(4))
hdr['num_channels'] = n_chan
hdr['deltabits'], = unpack('<i', f.read(4))
hdr['phys_chan'] = unpack('<' + 'i' * hdr['num_channels'],
f.read(hdr['num_channels'] * 4))
f.seek(4464)
hdr['headbox_type'] = unpack('<' + 'i' * 4, f.read(16))
hdr['headbox_sn'] = unpack('<' + 'i' * 4, f.read(16))
hdr['headbox_sw_version'] = _make_str(unpack('c' * 40, f.read(40)))
hdr['dsp_hw_version'] = _make_str(unpack('c' * 10, f.read(10)))
hdr['dsp_sw_version'] = _make_str(unpack('c' * 10, f.read(10)))
hdr['discardbits'], = unpack('<i', f.read(4))
if hdr['file_schema'] >= 8:
hdr['shorted'] = unpack('<' + 'h' * 1024, f.read(2048))[:n_chan]
hdr['frequency_factor'] = unpack('<' + 'h' * 1024,
f.read(2048))[:n_chan]
return hdr | 0.000359 |
def urlparse(url, scheme='', allow_fragments=True):
"""Parse a URL into 6 components:
<scheme>://<netloc>/<path>;<params>?<query>#<fragment>
Return a 6-tuple: (scheme, netloc, path, params, query, fragment).
Note that we don't break the components up in smaller bits
(e.g. netloc is a single string) and we don't expand % escapes."""
url, scheme, _coerce_result = _coerce_args(url, scheme)
splitresult = urlsplit(url, scheme, allow_fragments)
scheme, netloc, url, query, fragment = splitresult
if scheme in uses_params and ';' in url:
url, params = _splitparams(url)
else:
params = ''
result = ParseResult(scheme, netloc, url, params, query, fragment)
return _coerce_result(result) | 0.001342 |
def _get_url(url):
"""Retrieve requested URL"""
try:
data = HTTP_SESSION.get(url, stream=True)
data.raise_for_status()
except requests.exceptions.RequestException as exc:
raise FetcherException(exc)
return data | 0.003984 |
def _contentful_user_agent(self):
"""
Sets the X-Contentful-User-Agent header.
"""
header = {}
from . import __version__
header['sdk'] = {
'name': 'contentful-management.py',
'version': __version__
}
header['app'] = {
'name': self.application_name,
'version': self.application_version
}
header['integration'] = {
'name': self.integration_name,
'version': self.integration_version
}
header['platform'] = {
'name': 'python',
'version': platform.python_version()
}
os_name = platform.system()
if os_name == 'Darwin':
os_name = 'macOS'
elif not os_name or os_name == 'Java':
os_name = None
elif os_name and os_name not in ['macOS', 'Windows']:
os_name = 'Linux'
header['os'] = {
'name': os_name,
'version': platform.release()
}
def format_header(key, values):
header = "{0} {1}".format(key, values['name'])
if values['version'] is not None:
header = "{0}/{1}".format(header, values['version'])
return "{0};".format(header)
result = []
for k, values in header.items():
if not values['name']:
continue
result.append(format_header(k, values))
return ' '.join(result) | 0.001338 |
def launch_shell(username, hostname, password, port=22):
"""
Launches an ssh shell
"""
if not username or not hostname or not password:
return False
with tempfile.NamedTemporaryFile() as tmpFile:
os.system(sshCmdLine.format(password, tmpFile.name, username, hostname,
port))
return True | 0.002755 |
def _ensure_array_list(arrays):
"""Ensures that every element in a list is an instance of a numpy array."""
# Note: the isinstance test is needed below so that instances of FieldArray
# are not converted to numpy arrays
return [numpy.array(arr, ndmin=1) if not isinstance(arr, numpy.ndarray)
else arr for arr in arrays] | 0.002882 |
def characters(self, numberOfCharacters):
"""Returns characters at index + number of characters"""
return self.code[self.index:self.index + numberOfCharacters] | 0.011429 |
def search_all(self):
'''a "show all" search that doesn't require a query'''
# This should be your apis url for a search
url = '...'
# paginte get is what it sounds like, and what you want for multiple
# pages of results
results = self._paginate_get(url)
if len(results) == 0:
bot.info("No container collections found.")
sys.exit(1)
bot.info("Collections")
# Here is how to create a simple table. You of course must parse your
# custom result and form the fields in the table to be what you think
# are important!
rows = []
for result in results:
if "containers" in result:
for c in result['containers']:
rows.append([ c['uri'],
c['detail'] ])
bot.table(rows)
return rows | 0.004866 |
def _filterByPaddingNum(cls, iterable, num):
"""
Yield only path elements from iterable which have a frame
padding that matches the given target padding number
Args:
iterable (collections.Iterable):
num (int):
Yields:
str:
"""
_check = DISK_RE.match
for item in iterable:
# Add a filter for paths that don't match the frame
# padding of a given number
matches = _check(item)
if not matches:
if num <= 0:
# Not a sequence pattern, but we were asked
# to match on a zero padding
yield item
continue
frame = matches.group(3) or ''
if not frame:
if num <= 0:
# No frame value was parsed, but we were asked
# to match on a zero padding
yield item
continue
# We have a frame number
if frame[0] == '0' or frame[:2] == '-0':
if len(frame) == num:
# A frame leading with '0' is explicitly
# padded and can only be a match if its exactly
# the target padding number
yield item
continue
if len(frame) >= num:
# A frame that does not lead with '0' can match
# a padding width >= to the target padding number
yield item
continue | 0.001256 |
def _parser_options():
"""Parses the options and arguments from the command line."""
#We have two options: get some of the details from the config file,
import argparse
from acorn import base
pdescr = "ACORN setup and custom configuration"
parser = argparse.ArgumentParser(parents=[base.bparser], description=pdescr)
for arg, options in script_options.items():
parser.add_argument(arg, **options)
args = base.exhandler(examples, parser)
if args is None:
return
return args | 0.007435 |
def params(self, **kwargs):
"""
Specify query params to be used when executing the search. All the
keyword arguments will override the current values. See
https://elasticsearch-py.readthedocs.io/en/master/api.html#elasticsearch.Elasticsearch.search
for all available parameters.
Example::
s = Search()
s = s.params(routing='user-1', preference='local')
"""
s = self._clone()
s._params.update(kwargs)
return s | 0.003891 |
def setup_service(api_name, api_version, credentials=None):
"""Configures genomics API client.
Args:
api_name: Name of the Google API (for example: "genomics")
api_version: Version of the API (for example: "v2alpha1")
credentials: Credentials to be used for the gcloud API calls.
Returns:
A configured Google Genomics API client with appropriate credentials.
"""
if not credentials:
credentials = oauth2client.client.GoogleCredentials.get_application_default(
)
return apiclient.discovery.build(
api_name, api_version, credentials=credentials) | 0.008518 |
def visible_devices(self):
"""Unify all visible devices across all connected adapters
Returns:
dict: A dictionary mapping UUIDs to device information dictionaries
"""
devs = {}
for device_id, adapters in self._devices.items():
dev = None
max_signal = None
best_adapter = None
for adapter_id, devinfo in adapters.items():
connstring = "adapter/{0}/{1}".format(adapter_id, devinfo['connection_string'])
if dev is None:
dev = copy.deepcopy(devinfo)
del dev['connection_string']
if 'adapters' not in dev:
dev['adapters'] = []
best_adapter = adapter_id
dev['adapters'].append((adapter_id, devinfo['signal_strength'], connstring))
if max_signal is None:
max_signal = devinfo['signal_strength']
elif devinfo['signal_strength'] > max_signal:
max_signal = devinfo['signal_strength']
best_adapter = adapter_id
# If device has been seen in no adapters, it will get expired
# don't return it
if dev is None:
continue
dev['connection_string'] = "device/%x" % dev['uuid']
dev['adapters'] = sorted(dev['adapters'], key=lambda x: x[1], reverse=True)
dev['best_adapter'] = best_adapter
dev['signal_strength'] = max_signal
devs[device_id] = dev
return devs | 0.003115 |
def query(self, query='', name='', sortlist='', columns='',
limit=0, offset=0, style='Python'):
"""Query the table and return the result as a reference table.
This method queries the table. It forms a
`TaQL <../../doc/199.html>`_
command from the given arguments and executes it using the
:func:`taql` function.
The result is returned in a so-called reference table which
references the selected columns and rows in the original table.
Usually a reference table is temporary, but it can be made
persistent by giving it a name.
Note that a reference table is handled as any table, thus can be
queried again.
All arguments are optional, but at least one of `query`, `name`,
`sortlist`, and `columns` should be used.
See the `TaQL note <../../doc/199.html>`_ for the
detailed description of the the arguments representing the various
parts of a TaQL command.
`query`
The WHERE part of a TaQL command.
`name`
The name of the reference table if it is to be made persistent.
`sortlist`
The ORDERBY part of a TaQL command. It is a single string in which
commas have to be used to separate sort keys.
`columns`
The columns to be selected (projection in data base terms). It is a
single string in which commas have to be used to separate column
names. Apart from column names, expressions can be given as well.
`limit`
If > 0, maximum number of rows to be selected.
`offset`
If > 0, ignore the first N matches.
`style`
The TaQL syntax style to be used (defaults to Python).
"""
if not query and not sortlist and not columns and \
limit <= 0 and offset <= 0:
raise ValueError('No selection done (arguments query, ' +
'sortlist, columns, limit, and offset are empty)')
command = 'select '
if columns:
command += columns
command += ' from $1'
if query:
command += ' where ' + query
if sortlist:
command += ' orderby ' + sortlist
if limit > 0:
command += ' limit %d' % limit
if offset > 0:
command += ' offset %d' % offset
if name:
command += ' giving ' + name
return tablecommand(command, style, [self]) | 0.001198 |