File size: 10,121 Bytes
e86e346 f82d392 e86e346 f82d392 e86e346 c1c36d4 e86e346 ab53d78 e86e346 21c5a4b e86e346 ab53d78 e86e346 ab53d78 e86e346 ab53d78 e86e346 ab53d78 7d97f9b ab53d78 e3e0b40 e86e346 ab53d78 e86e346 ab53d78 e86e346 ab53d78 e86e346 ab53d78 e86e346 d85f643 e86e346 baa15a1 e86e346 baa15a1 e86e346 ab53d78 e86e346 ab53d78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""OntoLAMA Dataset Loading Script"""
import csv
import json
import os
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{he2023language,
title={Language Model Analysis for Ontology Subsumption Inference},
author={He, Yuan and Chen, Jiaoyan and Jim{\'e}nez-Ruiz, Ernesto and Dong, Hang and Horrocks, Ian},
booktitle={Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics},
year={2023}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
OntoLAMA: LAnguage Model Analysis datasets for Ontology Subsumption Inference.
"""
_URL = lambda name: f"https://zenodo.org/record/7700458/files/{name}.zip?download=1"
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://krr-oxford.github.io/DeepOnto/"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "Apache License, Version 2.0"
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class OntoLAMA(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="bimnli", version=VERSION, description="BiMNLI dataset created from the MNLI dataset."
),
datasets.BuilderConfig(
name="schemaorg-atomic-SI",
version=VERSION,
description="Atomic SI dataset created from the Schema.org Ontology.",
),
datasets.BuilderConfig(
name="doid-atomic-SI", version=VERSION, description="Atomic SI dataset created from the Disease Ontology."
),
datasets.BuilderConfig(
name="foodon-atomic-SI", version=VERSION, description="Atomic SI dataset created from the Food Ontology."
),
datasets.BuilderConfig(
name="foodon-complex-SI", version=VERSION, description="Complex SI dataset created from the Gene Ontology."
),
datasets.BuilderConfig(
name="go-atomic-SI", version=VERSION, description="Atomic SI dataset created from the Gene Ontology."
),
datasets.BuilderConfig(
name="go-complex-SI", version=VERSION, description="Complex SI dataset created from the Gene Ontology."
),
]
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
if "atomic-SI" in self.config.name: # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"v_sub_concept": datasets.Value("string"),
"v_super_concept": datasets.Value("string"),
"label": datasets.ClassLabel(
num_classes=2, names=["negative_subsumption", "positive_subsumption"], names_file=None, id=None
),
"axiom": datasets.Value("string"),
# These are the features of your dataset like images, labels ...
}
)
elif (
"complex-SI" in self.config.name
): # This is an example to show how to have different features for "first_domain" and "second_domain"
features = datasets.Features(
{
"v_sub_concept": datasets.Value("string"),
"v_super_concept": datasets.Value("string"),
"label": datasets.ClassLabel(
num_classes=2, names=["negative_subsumption", "positive_subsumption"], names_file=None, id=None
),
"axiom": datasets.Value("string"),
"anchor_axiom": datasets.Value("string") # the equivalence axiom used as anchor
# These are the features of your dataset like images, labels ...
}
)
elif self.config.name == "bimnli":
features = datasets.Features(
{
"premise": datasets.Value("string"),
"hypothesis": datasets.Value("string"),
"label": datasets.ClassLabel(
num_classes=2, names=["contradiction", "entailment"], names_file=None, id=None
),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
urls = _URL(self.config.name)
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, self.config.name, "train.jsonl"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, self.config.name, "dev.jsonl"),
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(data_dir, self.config.name, "test.jsonl"), "split": "test"},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
with open(filepath, encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
if "atomic-SI" in self.config.name:
# Yields examples as (key, example) tuples
yield key, {
"v_sub_concept": data["v_sub_concept"],
"v_super_concept": data["v_super_concept"],
"label": data["label"],
"axiom": data["axiom"],
}
elif "complex-SI" in self.config.name:
yield key, {
"v_sub_concept": data["v_sub_concept"],
"v_super_concept": data["v_super_concept"],
"label": data["label"],
"axiom": data["axiom"],
"anchor_axiom": data["anchor_axiom"],
}
elif self.config.name == "bimnli":
yield key, {
"premise": data["premise"],
"hypothesis": data["hypothesis"],
"label": data["label"],
}
|