license: apache-2.0
task_categories:
- text-classification
tags:
- Ontologies
- Subsumption Inference
- Natural Language Inference
pretty_name: OntoLAMA
size_categories:
- 1M<n<10M
language:
- en
dataset_info:
- config_name: schemaorg-atomic-SI
features:
- name: v_sub_concept
dtype: string
- name: v_super_concept
dtype: string
- name: label
dtype:
class_label:
names:
'0': negative_subsumption
'1': positive_subsumption
- name: axiom
dtype: string
splits:
- name: train
num_bytes: 103485
num_examples: 808
- name: validation
num_bytes: 51523
num_examples: 404
- name: test
num_bytes: 361200
num_examples: 2830
download_size: 82558
dataset_size: 516208
- config_name: doid-atomic-SI
features:
- name: v_sub_concept
dtype: string
- name: v_super_concept
dtype: string
- name: label
dtype:
class_label:
names:
'0': negative_subsumption
'1': positive_subsumption
- name: axiom
dtype: string
splits:
- name: train
num_bytes: 15803053
num_examples: 90500
- name: validation
num_bytes: 1978584
num_examples: 11312
- name: test
num_bytes: 1977582
num_examples: 11314
download_size: 3184028
dataset_size: 19759219
- config_name: foodon-atomic-SI
features:
- name: v_sub_concept
dtype: string
- name: v_super_concept
dtype: string
- name: label
dtype:
class_label:
names:
'0': negative_subsumption
'1': positive_subsumption
- name: axiom
dtype: string
splits:
- name: train
num_bytes: 128737404
num_examples: 768486
- name: validation
num_bytes: 16090857
num_examples: 96060
- name: test
num_bytes: 16098373
num_examples: 96062
download_size: 28499028
dataset_size: 160926634
- config_name: go-atomic-SI
features:
- name: v_sub_concept
dtype: string
- name: v_super_concept
dtype: string
- name: label
dtype:
class_label:
names:
'0': negative_subsumption
'1': positive_subsumption
- name: axiom
dtype: string
splits:
- name: train
num_bytes: 152537233
num_examples: 772870
- name: validation
num_bytes: 19060490
num_examples: 96608
- name: test
num_bytes: 19069265
num_examples: 96610
download_size: 32379717
dataset_size: 190666988
- config_name: bimnli
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': contradiction
'1': entailment
splits:
- name: train
num_bytes: 43363266
num_examples: 235622
- name: validation
num_bytes: 4818648
num_examples: 26180
- name: test
num_bytes: 2420273
num_examples: 12906
download_size: 19264134
dataset_size: 50602187
- config_name: foodon-complex-SI
features:
- name: v_sub_concept
dtype: string
- name: v_super_concept
dtype: string
- name: label
dtype:
class_label:
names:
'0': negative_subsumption
'1': positive_subsumption
- name: axiom
dtype: string
- name: anchor_axiom
dtype: string
splits:
- name: train
num_bytes: 2553731
num_examples: 3754
- name: validation
num_bytes: 1271721
num_examples: 1850
- name: test
num_bytes: 8926305
num_examples: 13080
download_size: 1064602
dataset_size: 12751757
- config_name: go-complex-SI
features:
- name: v_sub_concept
dtype: string
- name: v_super_concept
dtype: string
- name: label
dtype:
class_label:
names:
'0': negative_subsumption
'1': positive_subsumption
- name: axiom
dtype: string
- name: anchor_axiom
dtype: string
splits:
- name: train
num_bytes: 45328802
num_examples: 72318
- name: validation
num_bytes: 5671713
num_examples: 9040
- name: test
num_bytes: 5667069
num_examples: 9040
download_size: 5059364
dataset_size: 56667584
OntoLAMA: LAnguage Model Analysis for Ontology Subsumption Inference
Dataset Summary
OntoLAMA is a set of language model (LM) probing datasets for ontology subsumption inference. The work follows the "LMs-as-KBs" literature but focuses on conceptualised knowledge extracted from formalised KBs such as the OWL ontologies. Specifically, the subsumption inference (SI) task is introduced and formulated in the NLI style, where the sub-concept and the super-concept involved in a subsumption axiom are verbalised and fitted into a template to form the premise and hypothesis, respectively. The SI task is further divided into Atomic SI and Complex SI where the former involves only atomic named concepts and the latter involves both atomic and complex concepts. Real-world ontologies of different scales and domains are used for constructing OntoLAMA and in total there are four Atomic SI datasets and two Complex SI datasets.
Languages
The text in the dataset is in English, as used in the source ontologies. The associated BCP-47 code is en
.
Dataset Structure
Data Instances
An example in the Atomic SI dataset created from the Gene Ontology (GO) is as follows:
{
'v_sub_concept': 'ctpase activity',
'v_super_concept': 'ribonucleoside triphosphate phosphatase activity',
'label': 1,
'axiom': 'SubClassOf(<http://purl.obolibrary.org/obo/GO_0043273> <http://purl.obolibrary.org/obo/GO_0017111>)'
}
An example in the Complex SI dataset created from the Food Ontology (FoodOn) is as follows:
{
'v_sub_concept': 'ham and cheese sandwich that derives from some lima bean (whole)',
'v_super_concept': 'lima bean substance',
'label': 0,
'axiom': 'SubClassOf(ObjectIntersectionOf(<http://purl.obolibrary.org/obo/FOODON_03307824> ObjectSomeValuesFrom(<http://purl.obolibrary.org/obo/RO_0001000> <http://purl.obolibrary.org/obo/FOODON_03302053>)) <http://purl.obolibrary.org/obo/FOODON_00002776>)',
'anchor_axiom': 'EquivalentClasses(<http://purl.obolibrary.org/obo/FOODON_00002776> ObjectIntersectionOf(<http://purl.obolibrary.org/obo/FOODON_00002000> ObjectSomeValuesFrom(<http://purl.obolibrary.org/obo/RO_0001000> <http://purl.obolibrary.org/obo/FOODON_03302053>)) )'
}
An example in the biMNLI dataset created from the MNLI dataset is as follows:
{
'premise': 'At the turn of the 19th century Los Angeles and Salt Lake City were among the burgeoning metropolises of the new American West.',
'hypothesis': 'Salt Lake City was booming in the early 19th century.',
'label': 1
}
Data Fields
SI Data Fields
v_sub_concept
: verbalised sub-concept expression.v_super_concept
: verbalised super-concept expression.label
: a binary class label indicating whether two concepts really form a subsumption relationship (1
means yes).axiom
: a string representation of the original subsumption axiom which is useful for tracing back to the ontology.anchor_axiom
: (for complex SI only) a string representation of the anchor equivalence axiom used for sampling theaxiom
.
biMNLI Data Fields
premise
: inheritated from the MNLI dataset.hypothesis
: inheritated from the MNLI dataset.label
: a binary class label indicatingcontradiction
(0
) orentailment
(1
).
Data Splits
Source | #NamedConcepts | #EquivAxioms | #Dataset (Train/Dev/Test) |
---|---|---|---|
Schema.org | 894 | - | Atomic SI: 808/404/2,830 |
DOID | 11,157 | - | Atomic SI: 90,500/11,312/11,314 |
FoodOn | 30,995 | 2,383 | Atomic SI: 768,486/96,060/96,062 Complex SI: 3,754/1,850/13,080 |
GO | 43,303 | 11,456 | Atomic SI: 772,870/96,608/96,610 Complex SI: 72,318/9,040/9,040 |
MNLI | - | - | biMNLI: 235,622/26,180/12,906 |
Licensing Information
Apache License, Version 2.0
Citation Information
@article{he2023language,
title={Language Model Analysis for Ontology Subsumption Inference},
author={He, Yuan and Chen, Jiaoyan and Jim{\'e}nez-Ruiz, Ernesto and Dong, Hang and Horrocks, Ian},
journal={arXiv preprint arXiv:2302.06761},
year={2023}
}