python_code
stringlengths
0
290k
repo_name
stringclasses
30 values
file_path
stringlengths
6
125
# Copyright 2020 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """ List and inspect datasets.""" import inspect import os import shutil import warnings from pathlib import PurePath from typing import Dict, List, Mapping, Optional, Sequence, Union import huggingface_hub from .download.download_config import DownloadConfig from .download.download_manager import DownloadMode from .download.streaming_download_manager import StreamingDownloadManager from .info import DatasetInfo from .load import ( dataset_module_factory, get_dataset_builder_class, import_main_class, load_dataset_builder, metric_module_factory, ) from .utils.deprecation_utils import deprecated from .utils.file_utils import relative_to_absolute_path from .utils.logging import get_logger from .utils.version import Version logger = get_logger(__name__) class SplitsNotFoundError(ValueError): pass @deprecated("Use 'huggingface_hub.list_datasets' instead.") def list_datasets(with_community_datasets=True, with_details=False): """List all the datasets scripts available on the Hugging Face Hub. Args: with_community_datasets (`bool`, *optional*, defaults to `True`): Include the community provided datasets. with_details (`bool`, *optional*, defaults to `False`): Return the full details on the datasets instead of only the short name. Example: ```py >>> from datasets import list_datasets >>> list_datasets() ['acronym_identification', 'ade_corpus_v2', 'adversarial_qa', 'aeslc', 'afrikaans_ner_corpus', 'ag_news', ... ] ``` """ datasets = huggingface_hub.list_datasets(full=with_details) if not with_community_datasets: datasets = [dataset for dataset in datasets if "/" not in dataset.id] if not with_details: datasets = [dataset.id for dataset in datasets] return list(datasets) @deprecated( "Use 'evaluate.list_evaluation_modules' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate" ) def list_metrics(with_community_metrics=True, with_details=False): """List all the metrics script available on the Hugging Face Hub. <Deprecated version="2.5.0"> Use `evaluate.list_evaluation_modules` instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate </Deprecated> Args: with_community_metrics (:obj:`bool`, optional, default ``True``): Include the community provided metrics. with_details (:obj:`bool`, optional, default ``False``): Return the full details on the metrics instead of only the short name. Example: ```py >>> from datasets import list_metrics >>> list_metrics() ['accuracy', 'bertscore', 'bleu', 'bleurt', 'cer', 'chrf', ... ] ``` """ metrics = huggingface_hub.list_metrics() if not with_community_metrics: metrics = [metric for metric in metrics if "/" not in metric.id] if not with_details: metrics = [metric.id for metric in metrics] return metrics @deprecated("Clone the dataset repository from the Hugging Face Hub instead.") def inspect_dataset(path: str, local_path: str, download_config: Optional[DownloadConfig] = None, **download_kwargs): """ Allow inspection/modification of a dataset script by copying on local drive at local_path. Args: path (`str`): Path to the dataset processing script with the dataset builder. Can be either: - a local path to processing script or the directory containing the script (if the script has the same name as the directory), e.g. `'./dataset/squad'` or `'./dataset/squad/squad.py'`. - a dataset identifier on the Hugging Face Hub (list all available datasets and ids with [`list_datasets`]) e.g. `'squad'`, `'glue'` or `'openai/webtext'`. local_path (`str`): Path to the local folder to copy the dataset script to. download_config ([`DownloadConfig`], *optional*): Specific download configuration parameters. **download_kwargs (additional keyword arguments): Optional arguments for [`DownloadConfig`] which will override the attributes of `download_config` if supplied. """ dataset_module = dataset_module_factory(path, download_config=download_config, **download_kwargs) builder_cls = get_dataset_builder_class(dataset_module) module_source_path = inspect.getsourcefile(builder_cls) module_source_dirpath = os.path.dirname(module_source_path) for dirpath, dirnames, filenames in os.walk(module_source_dirpath): dst_dirpath = os.path.join(local_path, os.path.relpath(dirpath, module_source_dirpath)) os.makedirs(dst_dirpath, exist_ok=True) # skipping hidden directories; prune the search # [:] for the in-place list modification required by os.walk dirnames[:] = [dirname for dirname in dirnames if not dirname.startswith((".", "__"))] for filename in filenames: shutil.copy2(os.path.join(dirpath, filename), os.path.join(dst_dirpath, filename)) shutil.copystat(dirpath, dst_dirpath) local_path = relative_to_absolute_path(local_path) print( f"The processing script for dataset {path} can be inspected at {local_path}. " f"The main class is in {module_source_dirpath}. " f'You can modify this processing script and use it with `datasets.load_dataset("{PurePath(local_path).as_posix()}")`.' ) @deprecated( "Use 'evaluate.inspect_evaluation_module' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate" ) def inspect_metric(path: str, local_path: str, download_config: Optional[DownloadConfig] = None, **download_kwargs): r""" Allow inspection/modification of a metric script by copying it on local drive at local_path. <Deprecated version="2.5.0"> Use `evaluate.inspect_evaluation_module` instead, from the new library 🤗 Evaluate instead: https://huggingface.co/docs/evaluate </Deprecated> Args: path (``str``): path to the dataset processing script with the dataset builder. Can be either: - a local path to processing script or the directory containing the script (if the script has the same name as the directory), e.g. ``'./dataset/squad'`` or ``'./dataset/squad/squad.py'`` - a dataset identifier on the Hugging Face Hub (list all available datasets and ids with ``datasets.list_datasets()``) e.g. ``'squad'``, ``'glue'`` or ``'openai/webtext'`` local_path (``str``): path to the local folder to copy the datset script to. download_config (Optional ``datasets.DownloadConfig``): specific download configuration parameters. **download_kwargs (additional keyword arguments): optional attributes for DownloadConfig() which will override the attributes in download_config if supplied. """ metric_module = metric_module_factory(path, download_config=download_config, **download_kwargs) metric_cls = import_main_class(metric_module.module_path, dataset=False) module_source_path = inspect.getsourcefile(metric_cls) module_source_dirpath = os.path.dirname(module_source_path) for dirpath, dirnames, filenames in os.walk(module_source_dirpath): dst_dirpath = os.path.join(local_path, os.path.relpath(dirpath, module_source_dirpath)) os.makedirs(dst_dirpath, exist_ok=True) # skipping hidden directories; prune the search dirnames[:] = [dirname for dirname in dirnames if not dirname.startswith((".", "__"))] for filename in filenames: shutil.copy2(os.path.join(dirpath, filename), os.path.join(dst_dirpath, filename)) shutil.copystat(dirpath, dst_dirpath) local_path = relative_to_absolute_path(local_path) print( f"The processing scripts for metric {path} can be inspected at {local_path}. " f"The main class is in {module_source_dirpath}. " f'You can modify this processing scripts and use it with `datasets.load_metric("{PurePath(local_path).as_posix()}")`.' ) def get_dataset_infos( path: str, data_files: Optional[Union[Dict, List, str]] = None, download_config: Optional[DownloadConfig] = None, download_mode: Optional[Union[DownloadMode, str]] = None, revision: Optional[Union[str, Version]] = None, token: Optional[Union[bool, str]] = None, use_auth_token="deprecated", **config_kwargs, ): """Get the meta information about a dataset, returned as a dict mapping config name to DatasetInfoDict. Args: path (`str`): path to the dataset processing script with the dataset builder. Can be either: - a local path to processing script or the directory containing the script (if the script has the same name as the directory), e.g. `'./dataset/squad'` or `'./dataset/squad/squad.py'` - a dataset identifier on the Hugging Face Hub (list all available datasets and ids with [`datasets.list_datasets`]) e.g. `'squad'`, `'glue'` or``'openai/webtext'` revision (`Union[str, datasets.Version]`, *optional*): If specified, the dataset module will be loaded from the datasets repository at this version. By default: - it is set to the local version of the lib. - it will also try to load it from the main branch if it's not available at the local version of the lib. Specifying a version that is different from your local version of the lib might cause compatibility issues. download_config ([`DownloadConfig`], *optional*): Specific download configuration parameters. download_mode ([`DownloadMode`] or `str`, defaults to `REUSE_DATASET_IF_EXISTS`): Download/generate mode. data_files (`Union[Dict, List, str]`, *optional*): Defining the data_files of the dataset configuration. token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `"~/.huggingface"`. use_auth_token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `"~/.huggingface"`. <Deprecated version="2.14.0"> `use_auth_token` was deprecated in favor of `token` in version 2.14.0 and will be removed in 3.0.0. </Deprecated> **config_kwargs (additional keyword arguments): Optional attributes for builder class which will override the attributes if supplied. Example: ```py >>> from datasets import get_dataset_infos >>> get_dataset_infos('rotten_tomatoes') {'default': DatasetInfo(description="Movie Review Dataset.\nThis is a dataset of containing 5,331 positive and 5,331 negative processed\nsentences from Rotten Tomatoes movie reviews...), ...} ``` """ if use_auth_token != "deprecated": warnings.warn( "'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n" f"You can remove this warning by passing 'token={use_auth_token}' instead.", FutureWarning, ) token = use_auth_token config_names = get_dataset_config_names( path=path, revision=revision, download_config=download_config, download_mode=download_mode, data_files=data_files, token=token, ) return { config_name: get_dataset_config_info( path=path, config_name=config_name, data_files=data_files, download_config=download_config, download_mode=download_mode, revision=revision, token=token, **config_kwargs, ) for config_name in config_names } def get_dataset_config_names( path: str, revision: Optional[Union[str, Version]] = None, download_config: Optional[DownloadConfig] = None, download_mode: Optional[Union[DownloadMode, str]] = None, dynamic_modules_path: Optional[str] = None, data_files: Optional[Union[Dict, List, str]] = None, **download_kwargs, ): """Get the list of available config names for a particular dataset. Args: path (`str`): path to the dataset processing script with the dataset builder. Can be either: - a local path to processing script or the directory containing the script (if the script has the same name as the directory), e.g. `'./dataset/squad'` or `'./dataset/squad/squad.py'` - a dataset identifier on the Hugging Face Hub (list all available datasets and ids with [`datasets.list_datasets`]) e.g. `'squad'`, `'glue'` or `'openai/webtext'` revision (`Union[str, datasets.Version]`, *optional*): If specified, the dataset module will be loaded from the datasets repository at this version. By default: - it is set to the local version of the lib. - it will also try to load it from the main branch if it's not available at the local version of the lib. Specifying a version that is different from your local version of the lib might cause compatibility issues. download_config ([`DownloadConfig`], *optional*): Specific download configuration parameters. download_mode ([`DownloadMode`] or `str`, defaults to `REUSE_DATASET_IF_EXISTS`): Download/generate mode. dynamic_modules_path (`str`, defaults to `~/.cache/huggingface/modules/datasets_modules`): Optional path to the directory in which the dynamic modules are saved. It must have been initialized with `init_dynamic_modules`. By default the datasets and metrics are stored inside the `datasets_modules` module. data_files (`Union[Dict, List, str]`, *optional*): Defining the data_files of the dataset configuration. **download_kwargs (additional keyword arguments): Optional attributes for [`DownloadConfig`] which will override the attributes in `download_config` if supplied, for example `token`. Example: ```py >>> from datasets import get_dataset_config_names >>> get_dataset_config_names("glue") ['cola', 'sst2', 'mrpc', 'qqp', 'stsb', 'mnli', 'mnli_mismatched', 'mnli_matched', 'qnli', 'rte', 'wnli', 'ax'] ``` """ dataset_module = dataset_module_factory( path, revision=revision, download_config=download_config, download_mode=download_mode, dynamic_modules_path=dynamic_modules_path, data_files=data_files, **download_kwargs, ) builder_cls = get_dataset_builder_class(dataset_module, dataset_name=os.path.basename(path)) return list(builder_cls.builder_configs.keys()) or [ dataset_module.builder_kwargs.get("config_name", builder_cls.DEFAULT_CONFIG_NAME or "default") ] def get_dataset_config_info( path: str, config_name: Optional[str] = None, data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]] = None, download_config: Optional[DownloadConfig] = None, download_mode: Optional[Union[DownloadMode, str]] = None, revision: Optional[Union[str, Version]] = None, token: Optional[Union[bool, str]] = None, use_auth_token="deprecated", **config_kwargs, ) -> DatasetInfo: """Get the meta information (DatasetInfo) about a dataset for a particular config Args: path (``str``): path to the dataset processing script with the dataset builder. Can be either: - a local path to processing script or the directory containing the script (if the script has the same name as the directory), e.g. ``'./dataset/squad'`` or ``'./dataset/squad/squad.py'`` - a dataset identifier on the Hugging Face Hub (list all available datasets and ids with ``datasets.list_datasets()``) e.g. ``'squad'``, ``'glue'`` or ``'openai/webtext'`` config_name (:obj:`str`, optional): Defining the name of the dataset configuration. data_files (:obj:`str` or :obj:`Sequence` or :obj:`Mapping`, optional): Path(s) to source data file(s). download_config (:class:`~download.DownloadConfig`, optional): Specific download configuration parameters. download_mode (:class:`DownloadMode` or :obj:`str`, default ``REUSE_DATASET_IF_EXISTS``): Download/generate mode. revision (:class:`~utils.Version` or :obj:`str`, optional): Version of the dataset script to load. As datasets have their own git repository on the Datasets Hub, the default version "main" corresponds to their "main" branch. You can specify a different version than the default "main" by using a commit SHA or a git tag of the dataset repository. token (``str`` or :obj:`bool`, optional): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If True, or not specified, will get token from `"~/.huggingface"`. use_auth_token (``str`` or :obj:`bool`, optional): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If True, or not specified, will get token from `"~/.huggingface"`. <Deprecated version="2.14.0"> `use_auth_token` was deprecated in favor of `token` in version 2.14.0 and will be removed in 3.0.0. </Deprecated> **config_kwargs (additional keyword arguments): optional attributes for builder class which will override the attributes if supplied. """ if use_auth_token != "deprecated": warnings.warn( "'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n" f"You can remove this warning by passing 'token={use_auth_token}' instead.", FutureWarning, ) token = use_auth_token builder = load_dataset_builder( path, name=config_name, data_files=data_files, download_config=download_config, download_mode=download_mode, revision=revision, token=token, **config_kwargs, ) info = builder.info if info.splits is None: download_config = download_config.copy() if download_config else DownloadConfig() if token is not None: download_config.token = token builder._check_manual_download( StreamingDownloadManager(base_path=builder.base_path, download_config=download_config) ) try: info.splits = { split_generator.name: {"name": split_generator.name, "dataset_name": path} for split_generator in builder._split_generators( StreamingDownloadManager(base_path=builder.base_path, download_config=download_config) ) } except Exception as err: raise SplitsNotFoundError("The split names could not be parsed from the dataset config.") from err return info def get_dataset_split_names( path: str, config_name: Optional[str] = None, data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]] = None, download_config: Optional[DownloadConfig] = None, download_mode: Optional[Union[DownloadMode, str]] = None, revision: Optional[Union[str, Version]] = None, token: Optional[Union[bool, str]] = None, use_auth_token="deprecated", **config_kwargs, ): """Get the list of available splits for a particular config and dataset. Args: path (`str`): path to the dataset processing script with the dataset builder. Can be either: - a local path to processing script or the directory containing the script (if the script has the same name as the directory), e.g. `'./dataset/squad'` or `'./dataset/squad/squad.py'` - a dataset identifier on the Hugging Face Hub (list all available datasets and ids with [`datasets.list_datasets`]) e.g. `'squad'`, `'glue'` or `'openai/webtext'` config_name (`str`, *optional*): Defining the name of the dataset configuration. data_files (`str` or `Sequence` or `Mapping`, *optional*): Path(s) to source data file(s). download_config ([`DownloadConfig`], *optional*): Specific download configuration parameters. download_mode ([`DownloadMode`] or `str`, defaults to `REUSE_DATASET_IF_EXISTS`): Download/generate mode. revision ([`Version`] or `str`, *optional*): Version of the dataset script to load. As datasets have their own git repository on the Datasets Hub, the default version "main" corresponds to their "main" branch. You can specify a different version than the default "main" by using a commit SHA or a git tag of the dataset repository. token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `"~/.huggingface"`. use_auth_token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `"~/.huggingface"`. <Deprecated version="2.14.0"> `use_auth_token` was deprecated in favor of `token` in version 2.14.0 and will be removed in 3.0.0. </Deprecated> **config_kwargs (additional keyword arguments): Optional attributes for builder class which will override the attributes if supplied. Example: ```py >>> from datasets import get_dataset_split_names >>> get_dataset_split_names('rotten_tomatoes') ['train', 'validation', 'test'] ``` """ if use_auth_token != "deprecated": warnings.warn( "'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n" f"You can remove this warning by passing 'token={use_auth_token}' instead.", FutureWarning, ) token = use_auth_token info = get_dataset_config_info( path, config_name=config_name, data_files=data_files, download_config=download_config, download_mode=download_mode, revision=revision, token=token, **config_kwargs, ) return list(info.splits.keys())
datasets-main
src/datasets/inspect.py
from typing import TypeVar from .arrow_dataset import Dataset, _split_by_node_map_style_dataset from .iterable_dataset import IterableDataset, _split_by_node_iterable_dataset DatasetType = TypeVar("DatasetType", Dataset, IterableDataset) def split_dataset_by_node(dataset: DatasetType, rank: int, world_size: int) -> DatasetType: """ Split a dataset for the node at rank `rank` in a pool of nodes of size `world_size`. For map-style datasets: Each node is assigned a chunk of data, e.g. rank 0 is given the first chunk of the dataset. To maximize data loading throughput, chunks are made of contiguous data on disk if possible. For iterable datasets: If the dataset has a number of shards that is a factor of `world_size` (i.e. if `dataset.n_shards % world_size == 0`), then the shards are evenly assigned across the nodes, which is the most optimized. Otherwise, each node keeps 1 example out of `world_size`, skipping the other examples. Args: dataset ([`Dataset`] or [`IterableDataset`]): The dataset to split by node. rank (`int`): Rank of the current node. world_size (`int`): Total number of nodes. Returns: [`Dataset`] or [`IterableDataset`]: The dataset to be used on the node at rank `rank`. """ if isinstance(dataset, Dataset): return _split_by_node_map_style_dataset(dataset, rank=rank, world_size=world_size) else: return _split_by_node_iterable_dataset(dataset, rank=rank, world_size=world_size)
datasets-main
src/datasets/distributed.py
import importlib.util import os import tempfile from pathlib import PurePath from typing import TYPE_CHECKING, Dict, List, NamedTuple, Optional, Union import fsspec import numpy as np from .utils import logging if TYPE_CHECKING: from .arrow_dataset import Dataset # noqa: F401 try: from elasticsearch import Elasticsearch # noqa: F401 except ImportError: pass try: import faiss # noqa: F401 except ImportError: pass _has_elasticsearch = importlib.util.find_spec("elasticsearch") is not None _has_faiss = importlib.util.find_spec("faiss") is not None logger = logging.get_logger(__name__) class MissingIndex(Exception): pass class SearchResults(NamedTuple): scores: List[float] indices: List[int] class BatchedSearchResults(NamedTuple): total_scores: List[List[float]] total_indices: List[List[int]] class NearestExamplesResults(NamedTuple): scores: List[float] examples: dict class BatchedNearestExamplesResults(NamedTuple): total_scores: List[List[float]] total_examples: List[dict] class BaseIndex: """Base class for indexing""" def search(self, query, k: int = 10, **kwargs) -> SearchResults: """ To implement. This method has to return the scores and the indices of the retrieved examples given a certain query. """ raise NotImplementedError def search_batch(self, queries, k: int = 10, **kwargs) -> BatchedSearchResults: """Find the nearest examples indices to the query. Args: queries (`Union[List[str], np.ndarray]`): The queries as a list of strings if `column` is a text index or as a numpy array if `column` is a vector index. k (`int`): The number of examples to retrieve per query. Ouput: total_scores (`List[List[float]`): The retrieval scores of the retrieved examples per query. total_indices (`List[List[int]]`): The indices of the retrieved examples per query. """ total_scores, total_indices = [], [] for query in queries: scores, indices = self.search(query, k) total_scores.append(scores) total_indices.append(indices) return BatchedSearchResults(total_scores, total_indices) def save(self, file: Union[str, PurePath]): """Serialize the index on disk""" raise NotImplementedError @classmethod def load(cls, file: Union[str, PurePath]) -> "BaseIndex": """Deserialize the index from disk""" raise NotImplementedError class ElasticSearchIndex(BaseIndex): """ Sparse index using Elasticsearch. It is used to index text and run queries based on BM25 similarity. An Elasticsearch server needs to be accessible, and a python client is declared with ``` es_client = Elasticsearch([{'host': 'localhost', 'port': '9200'}]) ``` for example. """ def __init__( self, host: Optional[str] = None, port: Optional[int] = None, es_client: Optional["Elasticsearch"] = None, es_index_name: Optional[str] = None, es_index_config: Optional[dict] = None, ): if not _has_elasticsearch: raise ImportError( "You must install ElasticSearch to use ElasticSearchIndex. To do so you can run `pip install elasticsearch==7.7.1 for example`" ) if es_client is not None and (host is not None or port is not None): raise ValueError("Please specify either `es_client` or `(host, port)`, but not both.") host = host or "localhost" port = port or 9200 import elasticsearch.helpers # noqa: F401 - need this to properly load all the es features from elasticsearch import Elasticsearch # noqa: F811 self.es_client = es_client if es_client is not None else Elasticsearch([{"host": host, "port": str(port)}]) self.es_index_name = ( es_index_name if es_index_name is not None else "huggingface_datasets_" + os.path.basename(tempfile.NamedTemporaryFile().name) ) self.es_index_config = ( es_index_config if es_index_config is not None else { "settings": { "number_of_shards": 1, "analysis": {"analyzer": {"stop_standard": {"type": "standard", " stopwords": "_english_"}}}, }, "mappings": {"properties": {"text": {"type": "text", "analyzer": "standard", "similarity": "BM25"}}}, } ) def add_documents(self, documents: Union[List[str], "Dataset"], column: Optional[str] = None): """ Add documents to the index. If the documents are inside a certain column, you can specify it using the `column` argument. """ index_name = self.es_index_name index_config = self.es_index_config self.es_client.indices.create(index=index_name, body=index_config) number_of_docs = len(documents) progress = logging.tqdm(unit="docs", total=number_of_docs, disable=not logging.is_progress_bar_enabled()) successes = 0 def passage_generator(): if column is not None: for i, example in enumerate(documents): yield {"text": example[column], "_id": i} else: for i, example in enumerate(documents): yield {"text": example, "_id": i} # create the ES index import elasticsearch as es for ok, action in es.helpers.streaming_bulk( client=self.es_client, index=index_name, actions=passage_generator(), ): progress.update(1) successes += ok if successes != len(documents): logger.warning( f"Some documents failed to be added to ElasticSearch. Failures: {len(documents)-successes}/{len(documents)}" ) logger.info(f"Indexed {successes:d} documents") def search(self, query: str, k=10, **kwargs) -> SearchResults: """Find the nearest examples indices to the query. Args: query (`str`): The query as a string. k (`int`): The number of examples to retrieve. Ouput: scores (`List[List[float]`): The retrieval scores of the retrieved examples. indices (`List[List[int]]`): The indices of the retrieved examples. """ response = self.es_client.search( index=self.es_index_name, body={"query": {"multi_match": {"query": query, "fields": ["text"], "type": "cross_fields"}}, "size": k}, **kwargs, ) hits = response["hits"]["hits"] return SearchResults([hit["_score"] for hit in hits], [int(hit["_id"]) for hit in hits]) def search_batch(self, queries, k: int = 10, max_workers=10, **kwargs) -> BatchedSearchResults: import concurrent.futures total_scores, total_indices = [None] * len(queries), [None] * len(queries) with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor: future_to_index = {executor.submit(self.search, query, k, **kwargs): i for i, query in enumerate(queries)} for future in concurrent.futures.as_completed(future_to_index): index = future_to_index[future] results: SearchResults = future.result() total_scores[index] = results.scores total_indices[index] = results.indices return BatchedSearchResults(total_indices=total_indices, total_scores=total_scores) class FaissIndex(BaseIndex): """ Dense index using Faiss. It is used to index vectors. Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any size, up to ones that possibly do not fit in RAM. You can find more information about Faiss here: - For index types and the string factory: https://github.com/facebookresearch/faiss/wiki/The-index-factory - For GPU settings: https://github.com/facebookresearch/faiss/wiki/Faiss-on-the-GPU """ def __init__( self, device: Optional[Union[int, List[int]]] = None, string_factory: Optional[str] = None, metric_type: Optional[int] = None, custom_index: Optional["faiss.Index"] = None, ): """ Create a Dense index using Faiss. You can specify `device` if you want to run it on GPU (`device` must be the GPU index). You can find more information about Faiss here: - For `string factory`: https://github.com/facebookresearch/faiss/wiki/The-index-factory """ if string_factory is not None and custom_index is not None: raise ValueError("Please specify either `string_factory` or `custom_index` but not both.") if device is not None and custom_index is not None: raise ValueError( "Cannot pass both 'custom_index' and 'device'. " "Pass 'custom_index' already transferred to the target device instead." ) self.device = device self.string_factory = string_factory self.metric_type = metric_type self.faiss_index = custom_index if not _has_faiss: raise ImportError( "You must install Faiss to use FaissIndex. To do so you can run `conda install -c pytorch faiss-cpu` or `conda install -c pytorch faiss-gpu`. " "A community supported package is also available on pypi: `pip install faiss-cpu` or `pip install faiss-gpu`. " "Note that pip may not have the latest version of FAISS, and thus, some of the latest features and bug fixes may not be available." ) def add_vectors( self, vectors: Union[np.array, "Dataset"], column: Optional[str] = None, batch_size: int = 1000, train_size: Optional[int] = None, faiss_verbose: Optional[bool] = None, ): """ Add vectors to the index. If the arrays are inside a certain column, you can specify it using the `column` argument. """ import faiss # noqa: F811 # Create index if self.faiss_index is None: size = len(vectors[0]) if column is None else len(vectors[0][column]) if self.string_factory is not None: if self.metric_type is None: index = faiss.index_factory(size, self.string_factory) else: index = faiss.index_factory(size, self.string_factory, self.metric_type) else: if self.metric_type is None: index = faiss.IndexFlat(size) else: index = faiss.IndexFlat(size, self.metric_type) self.faiss_index = self._faiss_index_to_device(index, self.device) logger.info(f"Created faiss index of type {type(self.faiss_index)}") # Set verbosity level if faiss_verbose is not None: self.faiss_index.verbose = faiss_verbose if hasattr(self.faiss_index, "index") and self.faiss_index.index is not None: self.faiss_index.index.verbose = faiss_verbose if hasattr(self.faiss_index, "quantizer") and self.faiss_index.quantizer is not None: self.faiss_index.quantizer.verbose = faiss_verbose if hasattr(self.faiss_index, "clustering_index") and self.faiss_index.clustering_index is not None: self.faiss_index.clustering_index.verbose = faiss_verbose # Train if train_size is not None: train_vecs = vectors[:train_size] if column is None else vectors[:train_size][column] logger.info(f"Training the index with the first {len(train_vecs)} vectors") self.faiss_index.train(train_vecs) else: logger.info("Ignored the training step of the faiss index as `train_size` is None.") # Add vectors logger.info(f"Adding {len(vectors)} vectors to the faiss index") for i in logging.tqdm(range(0, len(vectors), batch_size), disable=not logging.is_progress_bar_enabled()): vecs = vectors[i : i + batch_size] if column is None else vectors[i : i + batch_size][column] self.faiss_index.add(vecs) @staticmethod def _faiss_index_to_device(index: "faiss.Index", device: Optional[Union[int, List[int]]] = None) -> "faiss.Index": """ Sends a faiss index to a device. A device can either be a positive integer (GPU id), a negative integer (all GPUs), or a list of positive integers (select GPUs to use), or `None` for CPU. """ # If device is not specified, then it runs on CPU. if device is None: return index import faiss # noqa: F811 # If the device id is given as an integer if isinstance(device, int): # Positive integers are directly mapped to GPU ids if device > -1: faiss_res = faiss.StandardGpuResources() index = faiss.index_cpu_to_gpu(faiss_res, device, index) # And negative integers mean using all GPUs else: index = faiss.index_cpu_to_all_gpus(index) # Device ids given as a list mean mapping to those devices specified. elif isinstance(device, (list, tuple)): index = faiss.index_cpu_to_gpus_list(index, gpus=list(device)) else: raise TypeError( f"The argument type: {type(device)} is not expected. " + "Please pass in either nothing, a positive int, a negative int, or a list of positive ints." ) return index def search(self, query: np.array, k=10, **kwargs) -> SearchResults: """Find the nearest examples indices to the query. Args: query (`np.array`): The query as a numpy array. k (`int`): The number of examples to retrieve. Ouput: scores (`List[List[float]`): The retrieval scores of the retrieved examples. indices (`List[List[int]]`): The indices of the retrieved examples. """ if len(query.shape) != 1 and (len(query.shape) != 2 or query.shape[0] != 1): raise ValueError("Shape of query is incorrect, it has to be either a 1D array or 2D (1, N)") queries = query.reshape(1, -1) if not queries.flags.c_contiguous: queries = np.asarray(queries, order="C") scores, indices = self.faiss_index.search(queries, k, **kwargs) return SearchResults(scores[0], indices[0].astype(int)) def search_batch(self, queries: np.array, k=10, **kwargs) -> BatchedSearchResults: """Find the nearest examples indices to the queries. Args: queries (`np.array`): The queries as a numpy array. k (`int`): The number of examples to retrieve. Ouput: total_scores (`List[List[float]`): The retrieval scores of the retrieved examples per query. total_indices (`List[List[int]]`): The indices of the retrieved examples per query. """ if len(queries.shape) != 2: raise ValueError("Shape of query must be 2D") if not queries.flags.c_contiguous: queries = np.asarray(queries, order="C") scores, indices = self.faiss_index.search(queries, k, **kwargs) return BatchedSearchResults(scores, indices.astype(int)) def save(self, file: Union[str, PurePath], storage_options: Optional[Dict] = None): """Serialize the FaissIndex on disk""" import faiss # noqa: F811 if self.device is not None and isinstance(self.device, (int, list, tuple)): index = faiss.index_gpu_to_cpu(self.faiss_index) else: index = self.faiss_index with fsspec.open(str(file), "wb", **(storage_options or {})) as f: faiss.write_index(index, faiss.BufferedIOWriter(faiss.PyCallbackIOWriter(f.write))) @classmethod def load( cls, file: Union[str, PurePath], device: Optional[Union[int, List[int]]] = None, storage_options: Optional[Dict] = None, ) -> "FaissIndex": """Deserialize the FaissIndex from disk""" import faiss # noqa: F811 # Instances of FaissIndex is essentially just a wrapper for faiss indices. faiss_index = cls(device=device) with fsspec.open(str(file), "rb", **(storage_options or {})) as f: index = faiss.read_index(faiss.BufferedIOReader(faiss.PyCallbackIOReader(f.read))) faiss_index.faiss_index = faiss_index._faiss_index_to_device(index, faiss_index.device) return faiss_index class IndexableMixin: """Add indexing features to `datasets.Dataset`""" def __init__(self): self._indexes: Dict[str, BaseIndex] = {} def __len__(self): raise NotImplementedError def __getitem__(self, key): raise NotImplementedError def is_index_initialized(self, index_name: str) -> bool: return index_name in self._indexes def _check_index_is_initialized(self, index_name: str): if not self.is_index_initialized(index_name): raise MissingIndex( f"Index with index_name '{index_name}' not initialized yet. Please make sure that you call `add_faiss_index` or `add_elasticsearch_index` first." ) def list_indexes(self) -> List[str]: """List the `colindex_nameumns`/identifiers of all the attached indexes.""" return list(self._indexes) def get_index(self, index_name: str) -> BaseIndex: """List the `index_name`/identifiers of all the attached indexes. Args: index_name (`str`): Index name. Returns: [`BaseIndex`] """ self._check_index_is_initialized(index_name) return self._indexes[index_name] def add_faiss_index( self, column: str, index_name: Optional[str] = None, device: Optional[Union[int, List[int]]] = None, string_factory: Optional[str] = None, metric_type: Optional[int] = None, custom_index: Optional["faiss.Index"] = None, batch_size: int = 1000, train_size: Optional[int] = None, faiss_verbose: bool = False, ): """Add a dense index using Faiss for fast retrieval. The index is created using the vectors of the specified column. You can specify `device` if you want to run it on GPU (`device` must be the GPU index, see more below). You can find more information about Faiss here: - For `string factory`: https://github.com/facebookresearch/faiss/wiki/The-index-factory Args: column (`str`): The column of the vectors to add to the index. index_name (Optional `str`): The index_name/identifier of the index. This is the index_name that is used to call `.get_nearest` or `.search`. By default it corresponds to `column`. device (Optional `Union[int, List[int]]`): If positive integer, this is the index of the GPU to use. If negative integer, use all GPUs. If a list of positive integers is passed in, run only on those GPUs. By default it uses the CPU. string_factory (Optional `str`): This is passed to the index factory of Faiss to create the index. Default index class is IndexFlatIP. metric_type (Optional `int`): Type of metric. Ex: `faiss.METRIC_INNER_PRODUCT` or `faiss.METRIC_L2`. custom_index (Optional `faiss.Index`): Custom Faiss index that you already have instantiated and configured for your needs. batch_size (Optional `int`): Size of the batch to use while adding vectors to the FaissIndex. Default value is 1000. <Added version="2.4.0"/> train_size (Optional `int`): If the index needs a training step, specifies how many vectors will be used to train the index. faiss_verbose (`bool`, defaults to False): Enable the verbosity of the Faiss index. """ index_name = index_name if index_name is not None else column faiss_index = FaissIndex( device=device, string_factory=string_factory, metric_type=metric_type, custom_index=custom_index ) faiss_index.add_vectors( self, column=column, batch_size=batch_size, train_size=train_size, faiss_verbose=faiss_verbose ) self._indexes[index_name] = faiss_index def add_faiss_index_from_external_arrays( self, external_arrays: np.array, index_name: str, device: Optional[Union[int, List[int]]] = None, string_factory: Optional[str] = None, metric_type: Optional[int] = None, custom_index: Optional["faiss.Index"] = None, batch_size: int = 1000, train_size: Optional[int] = None, faiss_verbose: bool = False, ): """Add a dense index using Faiss for fast retrieval. The index is created using the vectors of `external_arrays`. You can specify `device` if you want to run it on GPU (`device` must be the GPU index). You can find more information about Faiss here: - For `string factory`: https://github.com/facebookresearch/faiss/wiki/The-index-factory Args: external_arrays (`np.array`): If you want to use arrays from outside the lib for the index, you can set `external_arrays`. It will use `external_arrays` to create the Faiss index instead of the arrays in the given `column`. index_name (`str`): The index_name/identifier of the index. This is the index_name that is used to call `.get_nearest` or `.search`. device (Optional `Union[int, List[int]]`): If positive integer, this is the index of the GPU to use. If negative integer, use all GPUs. If a list of positive integers is passed in, run only on those GPUs. By default it uses the CPU. string_factory (Optional `str`): This is passed to the index factory of Faiss to create the index. Default index class is IndexFlatIP. metric_type (Optional `int`): Type of metric. Ex: `faiss.METRIC_INNER_PRODUCT` or `faiss.METRIC_L2`. custom_index (Optional `faiss.Index`): Custom Faiss index that you already have instantiated and configured for your needs. batch_size (Optional `int`): Size of the batch to use while adding vectors to the FaissIndex. Default value is 1000. <Added version="2.4.0"/> train_size (Optional `int`): If the index needs a training step, specifies how many vectors will be used to train the index. faiss_verbose (`bool`, defaults to False): Enable the verbosity of the Faiss index. """ faiss_index = FaissIndex( device=device, string_factory=string_factory, metric_type=metric_type, custom_index=custom_index ) faiss_index.add_vectors( external_arrays, column=None, batch_size=batch_size, train_size=train_size, faiss_verbose=faiss_verbose ) self._indexes[index_name] = faiss_index def save_faiss_index(self, index_name: str, file: Union[str, PurePath], storage_options: Optional[Dict] = None): """Save a FaissIndex on disk. Args: index_name (`str`): The index_name/identifier of the index. This is the index_name that is used to call `.get_nearest` or `.search`. file (`str`): The path to the serialized faiss index on disk or remote URI (e.g. `"s3://my-bucket/index.faiss"`). storage_options (`dict`, *optional*): Key/value pairs to be passed on to the file-system backend, if any. <Added version="2.11.0"/> """ index = self.get_index(index_name) if not isinstance(index, FaissIndex): raise ValueError(f"Index '{index_name}' is not a FaissIndex but a '{type(index)}'") index.save(file, storage_options=storage_options) logger.info(f"Saved FaissIndex {index_name} at {file}") def load_faiss_index( self, index_name: str, file: Union[str, PurePath], device: Optional[Union[int, List[int]]] = None, storage_options: Optional[Dict] = None, ): """Load a FaissIndex from disk. If you want to do additional configurations, you can have access to the faiss index object by doing `.get_index(index_name).faiss_index` to make it fit your needs. Args: index_name (`str`): The index_name/identifier of the index. This is the index_name that is used to call `.get_nearest` or `.search`. file (`str`): The path to the serialized faiss index on disk or remote URI (e.g. `"s3://my-bucket/index.faiss"`). device (Optional `Union[int, List[int]]`): If positive integer, this is the index of the GPU to use. If negative integer, use all GPUs. If a list of positive integers is passed in, run only on those GPUs. By default it uses the CPU. storage_options (`dict`, *optional*): Key/value pairs to be passed on to the file-system backend, if any. <Added version="2.11.0"/> """ index = FaissIndex.load(file, device=device, storage_options=storage_options) if index.faiss_index.ntotal != len(self): raise ValueError( f"Index size should match Dataset size, but Index '{index_name}' at {file} has {index.faiss_index.ntotal} elements while the dataset has {len(self)} examples." ) self._indexes[index_name] = index logger.info(f"Loaded FaissIndex {index_name} from {file}") def add_elasticsearch_index( self, column: str, index_name: Optional[str] = None, host: Optional[str] = None, port: Optional[int] = None, es_client: Optional["Elasticsearch"] = None, es_index_name: Optional[str] = None, es_index_config: Optional[dict] = None, ): """Add a text index using ElasticSearch for fast retrieval. Args: column (`str`): The column of the documents to add to the index. index_name (Optional `str`): The index_name/identifier of the index. This is the index name that is used to call `.get_nearest` or `.search`. By default it corresponds to `column`. host (Optional `str`, defaults to localhost): host of where ElasticSearch is running port (Optional `str`, defaults to 9200): port of where ElasticSearch is running es_client (Optional `elasticsearch.Elasticsearch`): The elasticsearch client used to create the index if host and port are None. es_index_name (Optional `str`): The elasticsearch index name used to create the index. es_index_config (Optional `dict`): The configuration of the elasticsearch index. Default config is: Config:: { "settings": { "number_of_shards": 1, "analysis": {"analyzer": {"stop_standard": {"type": "standard", " stopwords": "_english_"}}}, }, "mappings": { "properties": { "text": { "type": "text", "analyzer": "standard", "similarity": "BM25" }, } }, } """ index_name = index_name if index_name is not None else column es_index = ElasticSearchIndex( host=host, port=port, es_client=es_client, es_index_name=es_index_name, es_index_config=es_index_config ) es_index.add_documents(self, column=column) self._indexes[index_name] = es_index def load_elasticsearch_index( self, index_name: str, es_index_name: str, host: Optional[str] = None, port: Optional[int] = None, es_client: Optional["Elasticsearch"] = None, es_index_config: Optional[dict] = None, ): """Load an existing text index using ElasticSearch for fast retrieval. Args: index_name (`str`): The `index_name`/identifier of the index. This is the index name that is used to call `get_nearest` or `search`. es_index_name (`str`): The name of elasticsearch index to load. host (`str`, *optional*, defaults to `localhost`): Host of where ElasticSearch is running. port (`str`, *optional*, defaults to `9200`): Port of where ElasticSearch is running. es_client (`elasticsearch.Elasticsearch`, *optional*): The elasticsearch client used to create the index if host and port are `None`. es_index_config (`dict`, *optional*): The configuration of the elasticsearch index. Default config is: ``` { "settings": { "number_of_shards": 1, "analysis": {"analyzer": {"stop_standard": {"type": "standard", " stopwords": "_english_"}}}, }, "mappings": { "properties": { "text": { "type": "text", "analyzer": "standard", "similarity": "BM25" }, } }, } ``` """ self._indexes[index_name] = ElasticSearchIndex( host=host, port=port, es_client=es_client, es_index_name=es_index_name, es_index_config=es_index_config ) def drop_index(self, index_name: str): """Drop the index with the specified column. Args: index_name (`str`): The `index_name`/identifier of the index. """ del self._indexes[index_name] def search(self, index_name: str, query: Union[str, np.array], k: int = 10, **kwargs) -> SearchResults: """Find the nearest examples indices in the dataset to the query. Args: index_name (`str`): The name/identifier of the index. query (`Union[str, np.ndarray]`): The query as a string if `index_name` is a text index or as a numpy array if `index_name` is a vector index. k (`int`): The number of examples to retrieve. Returns: `(scores, indices)`: A tuple of `(scores, indices)` where: - **scores** (`List[List[float]`): the retrieval scores from either FAISS (`IndexFlatL2` by default) or ElasticSearch of the retrieved examples - **indices** (`List[List[int]]`): the indices of the retrieved examples """ self._check_index_is_initialized(index_name) return self._indexes[index_name].search(query, k, **kwargs) def search_batch( self, index_name: str, queries: Union[List[str], np.array], k: int = 10, **kwargs ) -> BatchedSearchResults: """Find the nearest examples indices in the dataset to the query. Args: index_name (`str`): The `index_name`/identifier of the index. queries (`Union[List[str], np.ndarray]`): The queries as a list of strings if `index_name` is a text index or as a numpy array if `index_name` is a vector index. k (`int`): The number of examples to retrieve per query. Returns: `(total_scores, total_indices)`: A tuple of `(total_scores, total_indices)` where: - **total_scores** (`List[List[float]`): the retrieval scores from either FAISS (`IndexFlatL2` by default) or ElasticSearch of the retrieved examples per query - **total_indices** (`List[List[int]]`): the indices of the retrieved examples per query """ self._check_index_is_initialized(index_name) return self._indexes[index_name].search_batch(queries, k, **kwargs) def get_nearest_examples( self, index_name: str, query: Union[str, np.array], k: int = 10, **kwargs ) -> NearestExamplesResults: """Find the nearest examples in the dataset to the query. Args: index_name (`str`): The index_name/identifier of the index. query (`Union[str, np.ndarray]`): The query as a string if `index_name` is a text index or as a numpy array if `index_name` is a vector index. k (`int`): The number of examples to retrieve. Returns: `(scores, examples)`: A tuple of `(scores, examples)` where: - **scores** (`List[float]`): the retrieval scores from either FAISS (`IndexFlatL2` by default) or ElasticSearch of the retrieved examples - **examples** (`dict`): the retrieved examples """ self._check_index_is_initialized(index_name) scores, indices = self.search(index_name, query, k, **kwargs) top_indices = [i for i in indices if i >= 0] return NearestExamplesResults(scores[: len(top_indices)], self[top_indices]) def get_nearest_examples_batch( self, index_name: str, queries: Union[List[str], np.array], k: int = 10, **kwargs ) -> BatchedNearestExamplesResults: """Find the nearest examples in the dataset to the query. Args: index_name (`str`): The `index_name`/identifier of the index. queries (`Union[List[str], np.ndarray]`): The queries as a list of strings if `index_name` is a text index or as a numpy array if `index_name` is a vector index. k (`int`): The number of examples to retrieve per query. Returns: `(total_scores, total_examples)`: A tuple of `(total_scores, total_examples)` where: - **total_scores** (`List[List[float]`): the retrieval scores from either FAISS (`IndexFlatL2` by default) or ElasticSearch of the retrieved examples per query - **total_examples** (`List[dict]`): the retrieved examples per query """ self._check_index_is_initialized(index_name) total_scores, total_indices = self.search_batch(index_name, queries, k, **kwargs) total_scores = [ scores_i[: len([i for i in indices_i if i >= 0])] for scores_i, indices_i in zip(total_scores, total_indices) ] total_samples = [self[[i for i in indices if i >= 0]] for indices in total_indices] return BatchedNearestExamplesResults(total_scores, total_samples)
datasets-main
src/datasets/search.py
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Splits related API.""" import abc import collections import copy import dataclasses import re from dataclasses import dataclass from typing import Dict, List, Optional, Union from .arrow_reader import FileInstructions, make_file_instructions from .naming import _split_re from .utils.py_utils import NonMutableDict, asdict @dataclass class SplitInfo: name: str = dataclasses.field(default="", metadata={"include_in_asdict_even_if_is_default": True}) num_bytes: int = dataclasses.field(default=0, metadata={"include_in_asdict_even_if_is_default": True}) num_examples: int = dataclasses.field(default=0, metadata={"include_in_asdict_even_if_is_default": True}) shard_lengths: Optional[List[int]] = None # Deprecated # For backward compatibility, this field needs to always be included in files like # dataset_infos.json and dataset_info.json files # To do so, we always include it in the output of datasets.utils.py_utils.asdict(split_info) dataset_name: Optional[str] = dataclasses.field( default=None, metadata={"include_in_asdict_even_if_is_default": True} ) @property def file_instructions(self): """Returns the list of dict(filename, take, skip).""" # `self.dataset_name` is assigned in `SplitDict.add()`. instructions = make_file_instructions( name=self.dataset_name, split_infos=[self], instruction=str(self.name), ) return instructions.file_instructions @dataclass class SubSplitInfo: """Wrapper around a sub split info. This class expose info on the subsplit: ``` ds, info = datasets.load_dataset(..., split='train[75%:]', with_info=True) info.splits['train[75%:]'].num_examples ``` """ instructions: FileInstructions @property def num_examples(self): """Returns the number of example in the subsplit.""" return self.instructions.num_examples @property def file_instructions(self): """Returns the list of dict(filename, take, skip).""" return self.instructions.file_instructions class SplitBase(metaclass=abc.ABCMeta): # pylint: disable=line-too-long """Abstract base class for Split compositionality. See the [guide on splits](../loading#slice-splits) for more information. There are three parts to the composition: 1) The splits are composed (defined, merged, split,...) together before calling the `.as_dataset()` function. This is done with the `__add__`, `__getitem__`, which return a tree of `SplitBase` (whose leaf are the `NamedSplit` objects) ``` split = datasets.Split.TRAIN + datasets.Split.TEST.subsplit(datasets.percent[:50]) ``` 2) The `SplitBase` is forwarded to the `.as_dataset()` function to be resolved into actual read instruction. This is done by the `.get_read_instruction()` method which takes the real dataset splits (name, number of shards,...) and parse the tree to return a `SplitReadInstruction()` object ``` read_instruction = split.get_read_instruction(self.info.splits) ``` 3) The `SplitReadInstruction` is then used in the `tf.data.Dataset` pipeline to define which files to read and how to skip examples within file. """ # pylint: enable=line-too-long @abc.abstractmethod def get_read_instruction(self, split_dict): """Parse the descriptor tree and compile all read instructions together. Args: split_dict: `dict`, The `dict[split_name, SplitInfo]` of the dataset Returns: split_read_instruction: `SplitReadInstruction` """ raise NotImplementedError("Abstract method") def __eq__(self, other): """Equality: datasets.Split.TRAIN == 'train'.""" if isinstance(other, (NamedSplit, str)): return False raise NotImplementedError("Equality is not implemented between merged/sub splits.") def __ne__(self, other): """InEquality: datasets.Split.TRAIN != 'test'.""" return not self.__eq__(other) def __add__(self, other): """Merging: datasets.Split.TRAIN + datasets.Split.TEST.""" return _SplitMerged(self, other) def subsplit(self, arg=None, k=None, percent=None, weighted=None): # pylint: disable=redefined-outer-name """Divides this split into subsplits. There are 3 ways to define subsplits, which correspond to the 3 arguments `k` (get `k` even subsplits), `percent` (get a slice of the dataset with `datasets.percent`), and `weighted` (get subsplits with proportions specified by `weighted`). Example:: ``` # 50% train, 50% test train, test = split.subsplit(k=2) # 50% train, 25% test, 25% validation train, test, validation = split.subsplit(weighted=[2, 1, 1]) # Extract last 20% subsplit = split.subsplit(datasets.percent[-20:]) ``` Warning: k and weighted will be converted into percent which mean that values below the percent will be rounded up or down. The final split may be bigger to deal with remainders. For instance: ``` train, test, valid = split.subsplit(k=3) # 33%, 33%, 34% s1, s2, s3, s4 = split.subsplit(weighted=[2, 2, 1, 1]) # 33%, 33%, 16%, 18% ``` Args: arg: If no kwargs are given, `arg` will be interpreted as one of `k`, `percent`, or `weighted` depending on the type. For example: ``` split.subsplit(10) # Equivalent to split.subsplit(k=10) split.subsplit(datasets.percent[:-20]) # percent=datasets.percent[:-20] split.subsplit([1, 1, 2]) # weighted=[1, 1, 2] ``` k: `int` If set, subdivide the split into `k` equal parts. percent: `datasets.percent slice`, return a single subsplit corresponding to a slice of the original split. For example: `split.subsplit(datasets.percent[-20:]) # Last 20% of the dataset`. weighted: `list[int]`, return a list of subsplits whose proportions match the normalized sum of the list. For example: `split.subsplit(weighted=[1, 1, 2]) # 25%, 25%, 50%`. Returns: A subsplit or list of subsplits extracted from this split object. """ # Note that the percent kwargs redefine the outer name datasets.percent. This # is done for consistency (.subsplit(percent=datasets.percent[:40])) if sum(bool(x) for x in (arg, k, percent, weighted)) != 1: raise ValueError("Only one argument of subsplit should be set.") # Auto deduce k if isinstance(arg, int): k = arg elif isinstance(arg, slice): percent = arg elif isinstance(arg, list): weighted = arg if not (k or percent or weighted): raise ValueError( f"Invalid split argument {arg}. Only list, slice and int supported. " "One of k, weighted or percent should be set to a non empty value." ) def assert_slices_coverage(slices): # Ensure that the expended slices cover all percents. assert sum((list(range(*s.indices(100))) for s in slices), []) == list(range(100)) if k: if not 0 < k <= 100: raise ValueError(f"Subsplit k should be between 0 and 100, got {k}") shift = 100 // k slices = [slice(i * shift, (i + 1) * shift) for i in range(k)] # Round up last element to ensure all elements are taken slices[-1] = slice(slices[-1].start, 100) # Internal check to ensure full coverage assert_slices_coverage(slices) return tuple(_SubSplit(self, s) for s in slices) elif percent: return _SubSplit(self, percent) elif weighted: # Normalize the weighted sum total = sum(weighted) weighted = [100 * x // total for x in weighted] # Create the slice for each of the elements start = 0 stop = 0 slices = [] for v in weighted: stop += v slices.append(slice(start, stop)) start = stop # Round up last element to ensure all elements are taken slices[-1] = slice(slices[-1].start, 100) # Internal check to ensure full coverage assert_slices_coverage(slices) return tuple(_SubSplit(self, s) for s in slices) else: # Should not be possible raise ValueError("Could not determine the split") # 2 requirements: # 1. datasets.percent be sliceable # 2. datasets.percent be documented # # Instances are not documented, so we want datasets.percent to be a class, but to # have it be sliceable, we need this metaclass. class PercentSliceMeta(type): def __getitem__(cls, slice_value): if not isinstance(slice_value, slice): raise ValueError(f"datasets.percent should only be called with slice, not {slice_value}") return slice_value class PercentSlice(metaclass=PercentSliceMeta): # pylint: disable=line-too-long """Syntactic sugar for defining slice subsplits: `datasets.percent[75:-5]`. See the [guide on splits](../loading#slice-splits) for more information. """ # pylint: enable=line-too-long pass percent = PercentSlice # pylint: disable=invalid-name class _SplitMerged(SplitBase): """Represent two split descriptors merged together.""" def __init__(self, split1, split2): self._split1 = split1 self._split2 = split2 def get_read_instruction(self, split_dict): read_instruction1 = self._split1.get_read_instruction(split_dict) read_instruction2 = self._split2.get_read_instruction(split_dict) return read_instruction1 + read_instruction2 def __repr__(self): return f"({repr(self._split1)} + {repr(self._split2)})" class _SubSplit(SplitBase): """Represent a sub split of a split descriptor.""" def __init__(self, split, slice_value): self._split = split self._slice_value = slice_value def get_read_instruction(self, split_dict): return self._split.get_read_instruction(split_dict)[self._slice_value] def __repr__(self): slice_str = "{start}:{stop}" if self._slice_value.step is not None: slice_str += ":{step}" slice_str = slice_str.format( start="" if self._slice_value.start is None else self._slice_value.start, stop="" if self._slice_value.stop is None else self._slice_value.stop, step=self._slice_value.step, ) return f"{repr(self._split)}(datasets.percent[{slice_str}])" class NamedSplit(SplitBase): """Descriptor corresponding to a named split (train, test, ...). Example: Each descriptor can be composed with other using addition or slice: ```py split = datasets.Split.TRAIN.subsplit(datasets.percent[0:25]) + datasets.Split.TEST ``` The resulting split will correspond to 25% of the train split merged with 100% of the test split. A split cannot be added twice, so the following will fail: ```py split = ( datasets.Split.TRAIN.subsplit(datasets.percent[:25]) + datasets.Split.TRAIN.subsplit(datasets.percent[75:]) ) # Error split = datasets.Split.TEST + datasets.Split.ALL # Error ``` The slices can be applied only one time. So the following are valid: ```py split = ( datasets.Split.TRAIN.subsplit(datasets.percent[:25]) + datasets.Split.TEST.subsplit(datasets.percent[:50]) ) split = (datasets.Split.TRAIN + datasets.Split.TEST).subsplit(datasets.percent[:50]) ``` But this is not valid: ```py train = datasets.Split.TRAIN test = datasets.Split.TEST split = train.subsplit(datasets.percent[:25]).subsplit(datasets.percent[:25]) split = (train.subsplit(datasets.percent[:25]) + test).subsplit(datasets.percent[:50]) ``` """ def __init__(self, name): self._name = name split_names_from_instruction = [split_instruction.split("[")[0] for split_instruction in name.split("+")] for split_name in split_names_from_instruction: if not re.match(_split_re, split_name): raise ValueError(f"Split name should match '{_split_re}' but got '{split_name}'.") def __str__(self): return self._name def __repr__(self): return f"NamedSplit({self._name!r})" def __eq__(self, other): """Equality: datasets.Split.TRAIN == 'train'.""" if isinstance(other, NamedSplit): return self._name == other._name # pylint: disable=protected-access elif isinstance(other, SplitBase): return False elif isinstance(other, str): # Other should be string return self._name == other else: raise ValueError(f"Equality not supported between split {self} and {other}") def __lt__(self, other): return self._name < other._name # pylint: disable=protected-access def __hash__(self): return hash(self._name) def get_read_instruction(self, split_dict): return SplitReadInstruction(split_dict[self._name]) class NamedSplitAll(NamedSplit): """Split corresponding to the union of all defined dataset splits.""" def __init__(self): super().__init__("all") def __repr__(self): return "NamedSplitAll()" def get_read_instruction(self, split_dict): # Merge all dataset split together read_instructions = [SplitReadInstruction(s) for s in split_dict.values()] return sum(read_instructions, SplitReadInstruction()) class Split: # pylint: disable=line-too-long """`Enum` for dataset splits. Datasets are typically split into different subsets to be used at various stages of training and evaluation. - `TRAIN`: the training data. - `VALIDATION`: the validation data. If present, this is typically used as evaluation data while iterating on a model (e.g. changing hyperparameters, model architecture, etc.). - `TEST`: the testing data. This is the data to report metrics on. Typically you do not want to use this during model iteration as you may overfit to it. - `ALL`: the union of all defined dataset splits. All splits, including compositions inherit from `datasets.SplitBase`. See the [guide](../load_hub#splits) on splits for more information. Example: ```py >>> datasets.SplitGenerator( ... name=datasets.Split.TRAIN, ... gen_kwargs={"split_key": "train", "files": dl_manager.download_and extract(url)}, ... ), ... datasets.SplitGenerator( ... name=datasets.Split.VALIDATION, ... gen_kwargs={"split_key": "validation", "files": dl_manager.download_and extract(url)}, ... ), ... datasets.SplitGenerator( ... name=datasets.Split.TEST, ... gen_kwargs={"split_key": "test", "files": dl_manager.download_and extract(url)}, ... ) ``` """ # pylint: enable=line-too-long TRAIN = NamedSplit("train") TEST = NamedSplit("test") VALIDATION = NamedSplit("validation") ALL = NamedSplitAll() def __new__(cls, name): """Create a custom split with datasets.Split('custom_name').""" return NamedSplitAll() if name == "all" else NamedSplit(name) # Similar to SplitInfo, but contain an additional slice info SlicedSplitInfo = collections.namedtuple( "SlicedSplitInfo", [ "split_info", "slice_value", ], ) # noqa: E231 class SplitReadInstruction: """Object containing the reading instruction for the dataset. Similarly to `SplitDescriptor` nodes, this object can be composed with itself, but the resolution happens instantaneously, instead of keeping track of the tree, such as all instructions are compiled and flattened in a single SplitReadInstruction object containing the list of files and slice to use. Once resolved, the instructions can be accessed with: ``` read_instructions.get_list_sliced_split_info() # List of splits to use ``` """ def __init__(self, split_info=None): self._splits = NonMutableDict(error_msg="Overlap between splits. Split {key} has been added with " "itself.") if split_info: self.add(SlicedSplitInfo(split_info=split_info, slice_value=None)) def add(self, sliced_split): """Add a SlicedSplitInfo the read instructions.""" # TODO(epot): Check that the number of examples per shard % 100 == 0 # Otherwise the slices value may be unbalanced and not exactly reflect the # requested slice. self._splits[sliced_split.split_info.name] = sliced_split def __add__(self, other): """Merging split together.""" # Will raise error if a split has already be added (NonMutableDict) # TODO(epot): If a split is already added but there is no overlap between # the slices, should merge the slices (ex: [:10] + [80:]) split_instruction = SplitReadInstruction() split_instruction._splits.update(self._splits) # pylint: disable=protected-access split_instruction._splits.update(other._splits) # pylint: disable=protected-access return split_instruction def __getitem__(self, slice_value): """Sub-splits.""" # Will raise an error if a split has already been sliced split_instruction = SplitReadInstruction() for v in self._splits.values(): if v.slice_value is not None: raise ValueError(f"Trying to slice Split {v.split_info.name} which has already been sliced") v = v._asdict() v["slice_value"] = slice_value split_instruction.add(SlicedSplitInfo(**v)) return split_instruction def get_list_sliced_split_info(self): return list(self._splits.values()) class SplitDict(dict): """Split info object.""" def __init__(self, *args, dataset_name=None, **kwargs): super().__init__(*args, **kwargs) self.dataset_name = dataset_name def __getitem__(self, key: Union[SplitBase, str]): # 1st case: The key exists: `info.splits['train']` if str(key) in self: return super().__getitem__(str(key)) # 2nd case: Uses instructions: `info.splits['train[50%]']` else: instructions = make_file_instructions( name=self.dataset_name, split_infos=self.values(), instruction=key, ) return SubSplitInfo(instructions) def __setitem__(self, key: Union[SplitBase, str], value: SplitInfo): if key != value.name: raise ValueError(f"Cannot add elem. (key mismatch: '{key}' != '{value.name}')") if key in self: raise ValueError(f"Split {key} already present") super().__setitem__(key, value) def add(self, split_info: SplitInfo): """Add the split info.""" if split_info.name in self: raise ValueError(f"Split {split_info.name} already present") split_info.dataset_name = self.dataset_name super().__setitem__(split_info.name, split_info) @property def total_num_examples(self): """Return the total number of examples.""" return sum(s.num_examples for s in self.values()) @classmethod def from_split_dict(cls, split_infos: Union[List, Dict], dataset_name: Optional[str] = None): """Returns a new SplitDict initialized from a Dict or List of `split_infos`.""" if isinstance(split_infos, dict): split_infos = list(split_infos.values()) if dataset_name is None: dataset_name = split_infos[0].get("dataset_name") if split_infos else None split_dict = cls(dataset_name=dataset_name) for split_info in split_infos: if isinstance(split_info, dict): split_info = SplitInfo(**split_info) split_dict.add(split_info) return split_dict def to_split_dict(self): """Returns a list of SplitInfo protos that we have.""" out = [] for split_name, split_info in self.items(): split_info = copy.deepcopy(split_info) split_info.name = split_name out.append(split_info) return out def copy(self): return SplitDict.from_split_dict(self.to_split_dict(), self.dataset_name) def _to_yaml_list(self) -> list: out = [asdict(s) for s in self.to_split_dict()] # we don't need the shard lengths in YAML, since it depends on max_shard_size and num_proc for split_info_dict in out: split_info_dict.pop("shard_lengths", None) # we don't need the dataset_name attribute that is deprecated for split_info_dict in out: split_info_dict.pop("dataset_name", None) return out @classmethod def _from_yaml_list(cls, yaml_data: list) -> "SplitDict": return cls.from_split_dict(yaml_data) @dataclass class SplitGenerator: """Defines the split information for the generator. This should be used as returned value of `GeneratorBasedBuilder._split_generators`. See `GeneratorBasedBuilder._split_generators` for more info and example of usage. Args: name (`str`): Name of the `Split` for which the generator will create the examples. **gen_kwargs (additional keyword arguments): Keyword arguments to forward to the `DatasetBuilder._generate_examples` method of the builder. Example: ```py >>> datasets.SplitGenerator( ... name=datasets.Split.TRAIN, ... gen_kwargs={"split_key": "train", "files": dl_manager.download_and_extract(url)}, ... ) ``` """ name: str gen_kwargs: Dict = dataclasses.field(default_factory=dict) split_info: SplitInfo = dataclasses.field(init=False) def __post_init__(self): self.name = str(self.name) # Make sure we convert NamedSplits in strings NamedSplit(self.name) # check that it's a valid split name self.split_info = SplitInfo(name=self.name)
datasets-main
src/datasets/splits.py
import copy import os import tempfile import warnings from functools import partial from itertools import groupby from typing import TYPE_CHECKING, Callable, Iterator, List, Optional, Tuple, TypeVar, Union import numpy as np import pyarrow as pa import pyarrow.compute as pc from . import config from .utils.logging import get_logger if TYPE_CHECKING: from .features.features import Features, FeatureType logger = get_logger(__name__) def inject_arrow_table_documentation(arrow_table_method): def wrapper(fn): fn.__doc__ = arrow_table_method.__doc__ + (fn.__doc__ if fn.__doc__ is not None else "") fn.__doc__ = fn.__doc__.replace("pyarrow.Table", "Table") if hasattr(arrow_table_method, "__annotations__"): fn.__annotations__ = arrow_table_method.__annotations__ return fn return wrapper def _in_memory_arrow_table_from_file(filename: str) -> pa.Table: in_memory_stream = pa.input_stream(filename) opened_stream = pa.ipc.open_stream(in_memory_stream) pa_table = opened_stream.read_all() return pa_table def _in_memory_arrow_table_from_buffer(buffer: pa.Buffer) -> pa.Table: stream = pa.BufferReader(buffer) opened_stream = pa.ipc.open_stream(stream) table = opened_stream.read_all() return table def _memory_mapped_record_batch_reader_from_file(filename: str) -> pa.RecordBatchStreamReader: memory_mapped_stream = pa.memory_map(filename) return pa.ipc.open_stream(memory_mapped_stream) def read_schema_from_file(filename: str) -> pa.Schema: """ Infer arrow table schema from file without loading whole file into memory. Usefull especially while having very big files. """ with pa.memory_map(filename) as memory_mapped_stream: schema = pa.ipc.open_stream(memory_mapped_stream).schema return schema def _memory_mapped_arrow_table_from_file(filename: str) -> pa.Table: opened_stream = _memory_mapped_record_batch_reader_from_file(filename) pa_table = opened_stream.read_all() return pa_table def _write_table_to_file(table: pa.Table, filename: str) -> int: with open(filename, "wb") as sink: writer = pa.RecordBatchStreamWriter(sink=sink, schema=table.schema) batches: List[pa.RecordBatch] = table.to_batches() for batch in batches: writer.write_batch(batch) writer.close() return sum(batch.nbytes for batch in batches) def _deepcopy(x, memo: dict): """deepcopy a regular class instance""" cls = x.__class__ result = cls.__new__(cls) memo[id(x)] = result for k, v in x.__dict__.items(): setattr(result, k, copy.deepcopy(v, memo)) return result def _interpolation_search(arr: List[int], x: int) -> int: """ Return the position i of a sorted array so that arr[i] <= x < arr[i+1] Args: arr (`List[int]`): non-empty sorted list of integers x (`int`): query Returns: `int`: the position i so that arr[i] <= x < arr[i+1] Raises: `IndexError`: if the array is empty or if the query is outside the array values """ i, j = 0, len(arr) - 1 while i < j and arr[i] <= x < arr[j]: k = i + ((j - i) * (x - arr[i]) // (arr[j] - arr[i])) if arr[k] <= x < arr[k + 1]: return k elif arr[k] < x: i, j = k + 1, j else: i, j = i, k raise IndexError(f"Invalid query '{x}' for size {arr[-1] if len(arr) else 'none'}.") class IndexedTableMixin: def __init__(self, table: pa.Table): self._schema: pa.Schema = table.schema self._batches: List[pa.RecordBatch] = [ recordbatch for recordbatch in table.to_batches() if len(recordbatch) > 0 ] self._offsets: np.ndarray = np.cumsum([0] + [len(b) for b in self._batches], dtype=np.int64) def fast_gather(self, indices: Union[List[int], np.ndarray]) -> pa.Table: """ Create a pa.Table by gathering the records at the records at the specified indices. Should be faster than pa.concat_tables(table.fast_slice(int(i) % table.num_rows, 1) for i in indices) since NumPy can compute the binary searches in parallel, highly optimized C """ if not len(indices): raise ValueError("Indices must be non-empty") batch_indices = np.searchsorted(self._offsets, indices, side="right") - 1 return pa.Table.from_batches( [ self._batches[batch_idx].slice(i - self._offsets[batch_idx], 1) for batch_idx, i in zip(batch_indices, indices) ], schema=self._schema, ) def fast_slice(self, offset=0, length=None) -> pa.Table: """ Slice the Table using interpolation search. The behavior is the same as `pyarrow.Table.slice` but it's significantly faster. Interpolation search is used to find the start and end indexes of the batches we want to keep. The batches to keep are then concatenated to form the sliced Table. """ if offset < 0: raise IndexError("Offset must be non-negative") elif offset >= self._offsets[-1] or (length is not None and length <= 0): return pa.Table.from_batches([], schema=self._schema) i = _interpolation_search(self._offsets, offset) if length is None or length + offset >= self._offsets[-1]: batches = self._batches[i:] batches[0] = batches[0].slice(offset - self._offsets[i]) else: j = _interpolation_search(self._offsets, offset + length - 1) batches = self._batches[i : j + 1] batches[-1] = batches[-1].slice(0, offset + length - self._offsets[j]) batches[0] = batches[0].slice(offset - self._offsets[i]) return pa.Table.from_batches(batches, schema=self._schema) class Table(IndexedTableMixin): """ Wraps a pyarrow Table by using composition. This is the base class for `InMemoryTable`, `MemoryMappedTable` and `ConcatenationTable`. It implements all the basic attributes/methods of the pyarrow Table class except the Table transforms: `slice, filter, flatten, combine_chunks, cast, add_column, append_column, remove_column, set_column, rename_columns` and `drop`. The implementation of these methods differs for the subclasses. """ def __init__(self, table: pa.Table): super().__init__(table) self.table = table def __deepcopy__(self, memo: dict): # arrow tables are immutable, so there's no need to copy self.table # moreover calling deepcopy on a pyarrow table seems to make pa.total_allocated_bytes() decrease for some reason # by adding it to the memo, self.table won't be copied memo[id(self.table)] = self.table # same for the recordbatches used by the index memo[id(self._batches)] = list(self._batches) return _deepcopy(self, memo) def __getstate__(self): # We can't pickle objects that are bigger than 4GiB, or it causes OverflowError # So we write the table on disk instead if self.table.nbytes >= config.MAX_TABLE_NBYTES_FOR_PICKLING: table = self.table with tempfile.NamedTemporaryFile("wb", delete=False, suffix=".arrow") as tmp_file: filename = tmp_file.name logger.debug( f"Attempting to pickle a table bigger than 4GiB. Writing it on the disk instead at {filename}" ) _write_table_to_file(table=table, filename=filename) return {"path": filename} else: return {"table": self.table} def __setstate__(self, state): if "path" in state: filename = state["path"] logger.debug(f"Unpickling a big table from the disk at {filename}") table = _in_memory_arrow_table_from_file(filename) logger.debug(f"Removing temporary table file at {filename}") os.remove(filename) else: table = state["table"] Table.__init__(self, table) def validate(self, *args, **kwargs): """ Perform validation checks. An exception is raised if validation fails. By default only cheap validation checks are run. Pass `full=True` for thorough validation checks (potentially `O(n)`). Args: full (`bool`, defaults to `False`): If `True`, run expensive checks, otherwise cheap checks only. Raises: `pa.lib.ArrowInvalid`: if validation fails """ return self.table.validate(*args, **kwargs) def equals(self, *args, **kwargs): """ Check if contents of two tables are equal. Args: other ([`~datasets.table.Table`]): Table to compare against. check_metadata `bool`, defaults to `False`): Whether schema metadata equality should be checked as well. Returns: `bool` """ args = tuple(arg.table if isinstance(arg, Table) else arg for arg in args) kwargs = {k: v.table if isinstance(v, Table) else v for k, v in kwargs} return self.table.equals(*args, **kwargs) def to_batches(self, *args, **kwargs): """ Convert Table to list of (contiguous) `RecordBatch` objects. Args: max_chunksize (`int`, defaults to `None`): Maximum size for `RecordBatch` chunks. Individual chunks may be smaller depending on the chunk layout of individual columns. Returns: `List[pyarrow.RecordBatch]` """ return self.table.to_batches(*args, **kwargs) def to_pydict(self, *args, **kwargs): """ Convert the Table to a `dict` or `OrderedDict`. Returns: `dict` """ return self.table.to_pydict(*args, **kwargs) def to_pylist(self, *args, **kwargs): """ Convert the Table to a list Returns: `list` """ try: return self.table.to_pylist(*args, **kwargs) except AttributeError: # pyarrow <7 does not have to_pylist, so we use to_pydict pydict = self.table.to_pydict(*args, **kwargs) return [{k: pydict[k][i] for k in pydict} for i in range(len(self.table))] def to_pandas(self, *args, **kwargs): """ Convert to a pandas-compatible NumPy array or DataFrame, as appropriate. Args: memory_pool (`MemoryPool`, defaults to `None`): Arrow MemoryPool to use for allocations. Uses the default memory pool is not passed. strings_to_categorical (`bool`, defaults to `False`): Encode string (UTF8) and binary types to `pandas.Categorical`. categories (`list`, defaults to `empty`): List of fields that should be returned as `pandas.Categorical`. Only applies to table-like data structures. zero_copy_only (`bool`, defaults to `False`): Raise an `ArrowException` if this function call would require copying the underlying data. integer_object_nulls (`bool`, defaults to `False`): Cast integers with nulls to objects. date_as_object (`bool`, defaults to `True`): Cast dates to objects. If `False`, convert to `datetime64[ns]` dtype. timestamp_as_object (`bool`, defaults to `False`): Cast non-nanosecond timestamps (`np.datetime64`) to objects. This is useful if you have timestamps that don't fit in the normal date range of nanosecond timestamps (1678 CE-2262 CE). If `False`, all timestamps are converted to `datetime64[ns]` dtype. use_threads (`bool`, defaults to `True`): Whether to parallelize the conversion using multiple threads. deduplicate_objects (`bool`, defaults to `False`): Do not create multiple copies Python objects when created, to save on memory use. Conversion will be slower. ignore_metadata (`bool`, defaults to `False`): If `True`, do not use the 'pandas' metadata to reconstruct the DataFrame index, if present. safe (`bool`, defaults to `True`): For certain data types, a cast is needed in order to store the data in a pandas DataFrame or Series (e.g. timestamps are always stored as nanoseconds in pandas). This option controls whether it is a safe cast or not. split_blocks (`bool`, defaults to `False`): If `True`, generate one internal "block" for each column when creating a pandas.DataFrame from a `RecordBatch` or `Table`. While this can temporarily reduce memory note that various pandas operations can trigger "consolidation" which may balloon memory use. self_destruct (`bool`, defaults to `False`): EXPERIMENTAL: If `True`, attempt to deallocate the originating Arrow memory while converting the Arrow object to pandas. If you use the object after calling `to_pandas` with this option it will crash your program. types_mapper (`function`, defaults to `None`): A function mapping a pyarrow DataType to a pandas `ExtensionDtype`. This can be used to override the default pandas type for conversion of built-in pyarrow types or in absence of `pandas_metadata` in the Table schema. The function receives a pyarrow DataType and is expected to return a pandas `ExtensionDtype` or `None` if the default conversion should be used for that type. If you have a dictionary mapping, you can pass `dict.get` as function. Returns: `pandas.Series` or `pandas.DataFrame`: `pandas.Series` or `pandas.DataFrame` depending on type of object """ return self.table.to_pandas(*args, **kwargs) def to_string(self, *args, **kwargs): return self.table.to_string(*args, **kwargs) def to_reader(self, max_chunksize: Optional[int] = None): """ Convert the Table to a RecordBatchReader. Note that this method is zero-copy, it merely exposes the same data under a different API. Args: max_chunksize (`int`, defaults to `None`) Maximum size for RecordBatch chunks. Individual chunks may be smaller depending on the chunk layout of individual columns. Returns: `pyarrow.RecordBatchReader` """ return self.table.to_reader(max_chunksize=max_chunksize) def field(self, *args, **kwargs): """ Select a schema field by its column name or numeric index. Args: i (`Union[int, str]`): The index or name of the field to retrieve. Returns: `pyarrow.Field` """ return self.table.field(*args, **kwargs) def column(self, *args, **kwargs): """ Select a column by its column name, or numeric index. Args: i (`Union[int, str]`): The index or name of the column to retrieve. Returns: `pyarrow.ChunkedArray` """ return self.table.column(*args, **kwargs) def itercolumns(self, *args, **kwargs): """ Iterator over all columns in their numerical order. Yields: `pyarrow.ChunkedArray` """ return self.table.itercolumns(*args, **kwargs) @property def schema(self): """ Schema of the table and its columns. Returns: `pyarrow.Schema` """ return self.table.schema @property def columns(self): """ List of all columns in numerical order. Returns: `List[pa.ChunkedArray]` """ return self.table.columns @property def num_columns(self): """ Number of columns in this table. Returns: int """ return self.table.num_columns @property def num_rows(self): """ Number of rows in this table. Due to the definition of a table, all columns have the same number of rows. Returns: int """ return self.table.num_rows @property def shape(self): """ Dimensions of the table: (#rows, #columns). Returns: `(int, int)`: Number of rows and number of columns. """ return self.table.shape @property def nbytes(self): """ Total number of bytes consumed by the elements of the table. """ return self.table.nbytes @property def column_names(self): """ Names of the table's columns. """ return self.table.column_names def __eq__(self, other): return self.equals(other) def __getitem__(self, i): return self.table[i] def __len__(self): return len(self.table) def __repr__(self): return self.table.__repr__().replace("pyarrow.Table", self.__class__.__name__) def __str__(self): return self.table.__str__().replace("pyarrow.Table", self.__class__.__name__) def slice(self, *args, **kwargs): """ Compute zero-copy slice of this Table. Args: offset (`int`, defaults to `0`): Offset from start of table to slice. length (`int`, defaults to `None`): Length of slice (default is until end of table starting from offset). Returns: `datasets.table.Table` """ raise NotImplementedError() def filter(self, *args, **kwargs): """ Select records from a Table. See `pyarrow.compute.filter` for full usage. """ raise NotImplementedError() def flatten(self, *args, **kwargs): """ Flatten this Table. Each column with a struct type is flattened into one column per struct field. Other columns are left unchanged. Args: memory_pool (`MemoryPool`, defaults to `None`): For memory allocations, if required, otherwise use default pool. Returns: `datasets.table.Table` """ raise NotImplementedError() def combine_chunks(self, *args, **kwargs): """ Make a new table by combining the chunks this table has. All the underlying chunks in the `ChunkedArray` of each column are concatenated into zero or one chunk. Args: memory_pool (`MemoryPool`, defaults to `None`): For memory allocations, if required, otherwise use default pool. Returns: `datasets.table.Table` """ raise NotImplementedError() def cast(self, *args, **kwargs): """ Cast table values to another schema. Args: target_schema (`Schema`): Schema to cast to, the names and order of fields must match. safe (`bool`, defaults to `True`): Check for overflows or other unsafe conversions. Returns: `datasets.table.Table` """ raise NotImplementedError() def replace_schema_metadata(self, *args, **kwargs): """ EXPERIMENTAL: Create shallow copy of table by replacing schema key-value metadata with the indicated new metadata (which may be None, which deletes any existing metadata Args: metadata (`dict`, defaults to `None`): Returns: `datasets.table.Table`: shallow_copy """ raise NotImplementedError() def add_column(self, *args, **kwargs): """ Add column to Table at position. A new table is returned with the column added, the original table object is left unchanged. Args: i (`int`): Index to place the column at. field_ (`Union[str, pyarrow.Field]`): If a string is passed then the type is deduced from the column data. column (`Union[pyarrow.Array, List[pyarrow.Array]]`): Column data. Returns: `datasets.table.Table`: New table with the passed column added. """ raise NotImplementedError() def append_column(self, *args, **kwargs): """ Append column at end of columns. Args: field_ (`Union[str, pyarrow.Field]`): If a string is passed then the type is deduced from the column data. column (`Union[pyarrow.Array, List[pyarrow.Array]]`): Column data. Returns: `datasets.table.Table`: New table with the passed column added. """ raise NotImplementedError() def remove_column(self, *args, **kwargs): """ Create new Table with the indicated column removed. Args: i (`int`): Index of column to remove. Returns: `datasets.table.Table`: New table without the column. """ raise NotImplementedError() def set_column(self, *args, **kwargs): """ Replace column in Table at position. Args: i (`int`): Index to place the column at. field_ (`Union[str, pyarrow.Field]`): If a string is passed then the type is deduced from the column data. column (`Union[pyarrow.Array, List[pyarrow.Array]]`): Column data. Returns: `datasets.table.Table`: New table with the passed column set. """ raise NotImplementedError() def rename_columns(self, *args, **kwargs): """ Create new table with columns renamed to provided names. """ raise NotImplementedError() def drop(self, *args, **kwargs): """ Drop one or more columns and return a new table. Args: columns (`List[str]`): List of field names referencing existing columns. Raises: `KeyError` : if any of the passed columns name are not existing. Returns: `datasets.table.Table`: New table without the columns. """ raise NotImplementedError() def select(self, *args, **kwargs): """ Select columns of the table. Returns a new table with the specified columns, and metadata preserved. Args: columns (:obj:`Union[List[str], List[int]]`): The column names or integer indices to select. Returns: `datasets.table.Table`: table with only a subset of the columns """ raise NotImplementedError() class TableBlock(Table): """ `TableBlock` is the allowed class inside a `ConcanetationTable`. Only `MemoryMappedTable` and `InMemoryTable` are `TableBlock`. This is because we don't want a `ConcanetationTable` made out of other `ConcanetationTables`. """ pass class InMemoryTable(TableBlock): """ The table is said in-memory when it is loaded into the user's RAM. Pickling it does copy all the data using memory. Its implementation is simple and uses the underlying pyarrow Table methods directly. This is different from the `MemoryMapped` table, for which pickling doesn't copy all the data in memory. For a `MemoryMapped`, unpickling instead reloads the table from the disk. `InMemoryTable` must be used when data fit in memory, while `MemoryMapped` are reserved for data bigger than memory or when you want the memory footprint of your application to stay low. """ @classmethod def from_file(cls, filename: str): table = _in_memory_arrow_table_from_file(filename) return cls(table) @classmethod def from_buffer(cls, buffer: pa.Buffer): table = _in_memory_arrow_table_from_buffer(buffer) return cls(table) @classmethod def from_pandas(cls, *args, **kwargs): """ Convert pandas.DataFrame to an Arrow Table. The column types in the resulting Arrow Table are inferred from the dtypes of the pandas.Series in the DataFrame. In the case of non-object Series, the NumPy dtype is translated to its Arrow equivalent. In the case of `object`, we need to guess the datatype by looking at the Python objects in this Series. Be aware that Series of the `object` dtype don't carry enough information to always lead to a meaningful Arrow type. In the case that we cannot infer a type, e.g. because the DataFrame is of length 0 or the Series only contains `None/nan` objects, the type is set to null. This behavior can be avoided by constructing an explicit schema and passing it to this function. Args: df (`pandas.DataFrame`): schema (`pyarrow.Schema`, *optional*): The expected schema of the Arrow Table. This can be used to indicate the type of columns if we cannot infer it automatically. If passed, the output will have exactly this schema. Columns specified in the schema that are not found in the DataFrame columns or its index will raise an error. Additional columns or index levels in the DataFrame which are not specified in the schema will be ignored. preserve_index (`bool`, *optional*): Whether to store the index as an additional column in the resulting `Table`. The default of None will store the index as a column, except for RangeIndex which is stored as metadata only. Use `preserve_index=True` to force it to be stored as a column. nthreads (`int`, defaults to `None` (may use up to system CPU count threads)) If greater than 1, convert columns to Arrow in parallel using indicated number of threads. columns (`List[str]`, *optional*): List of column to be converted. If `None`, use all columns. safe (`bool`, defaults to `True`): Check for overflows or other unsafe conversions, Returns: `datasets.table.Table`: Examples: ```python >>> import pandas as pd >>> import pyarrow as pa >>> df = pd.DataFrame({ ... 'int': [1, 2], ... 'str': ['a', 'b'] ... }) >>> pa.Table.from_pandas(df) <pyarrow.lib.Table object at 0x7f05d1fb1b40> ``` """ return cls(pa.Table.from_pandas(*args, **kwargs)) @classmethod def from_arrays(cls, *args, **kwargs): """ Construct a Table from Arrow arrays. Args: arrays (`List[Union[pyarrow.Array, pyarrow.ChunkedArray]]`): Equal-length arrays that should form the table. names (`List[str]`, *optional*): Names for the table columns. If not passed, schema must be passed. schema (`Schema`, defaults to `None`): Schema for the created table. If not passed, names must be passed. metadata (`Union[dict, Mapping]`, defaults to `None`): Optional metadata for the schema (if inferred). Returns: `datasets.table.Table` """ return cls(pa.Table.from_arrays(*args, **kwargs)) @classmethod def from_pydict(cls, *args, **kwargs): """ Construct a Table from Arrow arrays or columns. Args: mapping (`Union[dict, Mapping]`): A mapping of strings to Arrays or Python lists. schema (`Schema`, defaults to `None`): If not passed, will be inferred from the Mapping values metadata (`Union[dict, Mapping]`, defaults to `None`): Optional metadata for the schema (if inferred). Returns: `datasets.table.Table` """ return cls(pa.Table.from_pydict(*args, **kwargs)) @classmethod def from_pylist(cls, mapping, *args, **kwargs): """ Construct a Table from list of rows / dictionaries. Args: mapping (`List[dict]`): A mapping of strings to row values. schema (`Schema`, defaults to `None`): If not passed, will be inferred from the Mapping values metadata (`Union[dict, Mapping]`, defaults to `None`): Optional metadata for the schema (if inferred). Returns: `datasets.table.Table` """ return cls(pa.Table.from_pylist(mapping, *args, **kwargs)) @classmethod def from_batches(cls, *args, **kwargs): """ Construct a Table from a sequence or iterator of Arrow `RecordBatches`. Args: batches (`Union[Sequence[pyarrow.RecordBatch], Iterator[pyarrow.RecordBatch]]`): Sequence of `RecordBatch` to be converted, all schemas must be equal. schema (`Schema`, defaults to `None`): If not passed, will be inferred from the first `RecordBatch`. Returns: `datasets.table.Table`: """ return cls(pa.Table.from_batches(*args, **kwargs)) def slice(self, offset=0, length=None): """ Compute zero-copy slice of this Table. Args: offset (`int`, defaults to `0`): Offset from start of table to slice. length (`int`, defaults to `None`): Length of slice (default is until end of table starting from offset). Returns: `datasets.table.Table` """ # Use fast slicing here return InMemoryTable(self.fast_slice(offset=offset, length=length)) def filter(self, *args, **kwargs): """ Select records from a Table. See `pyarrow.compute.filter` for full usage. """ return InMemoryTable(self.table.filter(*args, **kwargs)) def flatten(self, *args, **kwargs): """ Flatten this Table. Each column with a struct type is flattened into one column per struct field. Other columns are left unchanged. Args: memory_pool (`MemoryPool`, defaults to `None`): For memory allocations, if required, otherwise use default pool. Returns: `datasets.table.Table` """ return InMemoryTable(table_flatten(self.table, *args, **kwargs)) def combine_chunks(self, *args, **kwargs): """ Make a new table by combining the chunks this table has. All the underlying chunks in the `ChunkedArray` of each column are concatenated into zero or one chunk. Args: memory_pool (`MemoryPool`, defaults to `None`): For memory allocations, if required, otherwise use default pool. Returns: `datasets.table.Table` """ return InMemoryTable(self.table.combine_chunks(*args, **kwargs)) def cast(self, *args, **kwargs): """ Cast table values to another schema. Args: target_schema (`Schema`): Schema to cast to, the names and order of fields must match. safe (`bool`, defaults to `True`): Check for overflows or other unsafe conversions. Returns: `datasets.table.Table` """ return InMemoryTable(table_cast(self.table, *args, **kwargs)) def replace_schema_metadata(self, *args, **kwargs): """ EXPERIMENTAL: Create shallow copy of table by replacing schema key-value metadata with the indicated new metadata (which may be `None`, which deletes any existing metadata). Args: metadata (`dict`, defaults to `None`): Returns: `datasets.table.Table`: shallow_copy """ return InMemoryTable(self.table.replace_schema_metadata(*args, **kwargs)) def add_column(self, *args, **kwargs): """ Add column to Table at position. A new table is returned with the column added, the original table object is left unchanged. Args: i (`int`): Index to place the column at. field_ (`Union[str, pyarrow.Field]`): If a string is passed then the type is deduced from the column data. column (`Union[pyarrow.Array, List[pyarrow.Array]]`): Column data. Returns: `datasets.table.Table`: New table with the passed column added. """ return InMemoryTable(self.table.add_column(*args, **kwargs)) def append_column(self, *args, **kwargs): """ Append column at end of columns. Args: field_ (`Union[str, pyarrow.Field]`): If a string is passed then the type is deduced from the column data. column (`Union[pyarrow.Array, List[pyarrow.Array]]`): Column data. Returns: `datasets.table.Table`: New table with the passed column added. """ return InMemoryTable(self.table.append_column(*args, **kwargs)) def remove_column(self, *args, **kwargs): """ Create new Table with the indicated column removed. Args: i (`int`): Index of column to remove. Returns: `datasets.table.Table`: New table without the column. """ return InMemoryTable(self.table.remove_column(*args, **kwargs)) def set_column(self, *args, **kwargs): """ Replace column in Table at position. Args: i (`int`): Index to place the column at. field_ (`Union[str, pyarrow.Field]`): If a string is passed then the type is deduced from the column data. column (`Union[pyarrow.Array, List[pyarrow.Array]]`): Column data. Returns: `datasets.table.Table`: New table with the passed column set. """ return InMemoryTable(self.table.set_column(*args, **kwargs)) def rename_columns(self, *args, **kwargs): """ Create new table with columns renamed to provided names. """ return InMemoryTable(self.table.rename_columns(*args, **kwargs)) def drop(self, *args, **kwargs): """ Drop one or more columns and return a new table. Args: columns (`List[str]`): List of field names referencing existing columns. Raises: `KeyError` : if any of the passed columns name are not existing. Returns: `datasets.table.Table`: New table without the columns. """ return InMemoryTable(self.table.drop(*args, **kwargs)) def select(self, *args, **kwargs): """ Select columns of the table. Returns a new table with the specified columns, and metadata preserved. Args: columns (:obj:`Union[List[str], List[int]]`): The column names or integer indices to select. Returns: :class:`datasets.table.Table`: New table with the specified columns, and metadata preserved. """ return InMemoryTable(self.table.select(*args, **kwargs)) # The MemoryMappedTable needs replays to properly reload tables from the disk Replay = Tuple[str, tuple, dict] class MemoryMappedTable(TableBlock): """ The table is said memory mapped when it doesn't use the user's RAM but loads the data from the disk instead. Pickling it doesn't copy the data into memory. Instead, only the path to the memory mapped arrow file is pickled, as well as the list of transforms to "replay" when reloading the table from the disk. Its implementation requires to store an history of all the transforms that were applied to the underlying pyarrow Table, so that they can be "replayed" when reloading the Table from the disk. This is different from the `InMemoryTable` table, for which pickling does copy all the data in memory. `InMemoryTable` must be used when data fit in memory, while `MemoryMapped` are reserved for data bigger than memory or when you want the memory footprint of your application to stay low. """ def __init__(self, table: pa.Table, path: str, replays: Optional[List[Replay]] = None): super().__init__(table) self.path = os.path.abspath(path) self.replays: List[Replay] = replays if replays is not None else [] @classmethod def from_file(cls, filename: str, replays=None): table = _memory_mapped_arrow_table_from_file(filename) table = cls._apply_replays(table, replays) return cls(table, filename, replays) def __getstate__(self): return {"path": self.path, "replays": self.replays} def __setstate__(self, state): path = state["path"] replays = state["replays"] table = _memory_mapped_arrow_table_from_file(path) table = self._apply_replays(table, replays) MemoryMappedTable.__init__(self, table, path=path, replays=replays) @staticmethod def _apply_replays(table: pa.Table, replays: Optional[List[Replay]] = None) -> pa.Table: if replays is not None: for name, args, kwargs in replays: if name == "cast": table = table_cast(table, *args, **kwargs) elif name == "flatten": table = table_flatten(table, *args, **kwargs) else: table = getattr(table, name)(*args, **kwargs) return table def _append_replay(self, replay: Replay) -> List[Replay]: replays = copy.deepcopy(self.replays) replays.append(replay) return replays def slice(self, offset=0, length=None): """ Compute zero-copy slice of this Table. Args: offset (`int`, defaults to `0`): Offset from start of table to slice. length (`int`, defaults to `None`): Length of slice (default is until end of table starting from offset). Returns: `datasets.table.Table` """ replay = ("slice", (offset, length), {}) replays = self._append_replay(replay) # Use fast slicing here return MemoryMappedTable(self.fast_slice(offset=offset, length=length), self.path, replays) def filter(self, *args, **kwargs): """ Select records from a Table. See `pyarrow.compute.filter` for full usage. """ replay = ("filter", copy.deepcopy(args), copy.deepcopy(kwargs)) replays = self._append_replay(replay) return MemoryMappedTable(self.table.filter(*args, **kwargs), self.path, replays) def flatten(self, *args, **kwargs): """ Flatten this Table. Each column with a struct type is flattened into one column per struct field. Other columns are left unchanged. Args: memory_pool (`MemoryPool`, defaults to `None`): For memory allocations, if required, otherwise use default pool. Returns: `datasets.table.Table` """ replay = ("flatten", copy.deepcopy(args), copy.deepcopy(kwargs)) replays = self._append_replay(replay) return MemoryMappedTable(table_flatten(self.table, *args, **kwargs), self.path, replays) def combine_chunks(self, *args, **kwargs): """ Make a new table by combining the chunks this table has. All the underlying chunks in the ChunkedArray of each column are concatenated into zero or one chunk. Args: memory_pool (`MemoryPool`, defaults to `None`): For memory allocations, if required, otherwise use default pool. Returns: `datasets.table.Table` """ replay = ("combine_chunks", copy.deepcopy(args), copy.deepcopy(kwargs)) replays = self._append_replay(replay) return MemoryMappedTable(self.table.combine_chunks(*args, **kwargs), self.path, replays) def cast(self, *args, **kwargs): """ Cast table values to another schema Args: target_schema (`Schema`): Schema to cast to, the names and order of fields must match. safe (`bool`, defaults to `True`): Check for overflows or other unsafe conversions. Returns: `datasets.table.Table` """ replay = ("cast", copy.deepcopy(args), copy.deepcopy(kwargs)) replays = self._append_replay(replay) return MemoryMappedTable(table_cast(self.table, *args, **kwargs), self.path, replays) def replace_schema_metadata(self, *args, **kwargs): """ EXPERIMENTAL: Create shallow copy of table by replacing schema key-value metadata with the indicated new metadata (which may be None, which deletes any existing metadata. Args: metadata (`dict`, defaults to `None`): Returns: `datasets.table.Table`: shallow_copy """ replay = ("replace_schema_metadata", copy.deepcopy(args), copy.deepcopy(kwargs)) replays = self._append_replay(replay) return MemoryMappedTable(self.table.replace_schema_metadata(*args, **kwargs), self.path, replays) def add_column(self, *args, **kwargs): """ Add column to Table at position. A new table is returned with the column added, the original table object is left unchanged. Args: i (`int`): Index to place the column at. field_ (`Union[str, pyarrow.Field]`): If a string is passed then the type is deduced from the column data. column (`Union[pyarrow.Array, List[pyarrow.Array]]`): Column data. Returns: `datasets.table.Table`: New table with the passed column added. """ replay = ("add_column", copy.deepcopy(args), copy.deepcopy(kwargs)) replays = self._append_replay(replay) return MemoryMappedTable(self.table.add_column(*args, **kwargs), self.path, replays) def append_column(self, *args, **kwargs): """ Append column at end of columns. Args: field_ (`Union[str, pyarrow.Field]`): If a string is passed then the type is deduced from the column data. column (`Union[pyarrow.Array, List[pyarrow.Array]]`): Column data. Returns: `datasets.table.Table`: New table with the passed column added. """ replay = ("append_column", copy.deepcopy(args), copy.deepcopy(kwargs)) replays = self._append_replay(replay) return MemoryMappedTable(self.table.append_column(*args, **kwargs), self.path, replays) def remove_column(self, *args, **kwargs): """ Create new Table with the indicated column removed. Args: i (`int`): Index of column to remove. Returns: `datasets.table.Table`: New table without the column. """ replay = ("remove_column", copy.deepcopy(args), copy.deepcopy(kwargs)) replays = self._append_replay(replay) return MemoryMappedTable(self.table.remove_column(*args, **kwargs), self.path, replays) def set_column(self, *args, **kwargs): """ Replace column in Table at position. Args: i (`int`): Index to place the column at. field_ (`Union[str, pyarrow.Field]`): If a string is passed then the type is deduced from the column data. column (`Union[pyarrow.Array, List[pyarrow.Array]]`): Column data. Returns: `datasets.table.Table`: New table with the passed column set. """ replay = ("set_column", copy.deepcopy(args), copy.deepcopy(kwargs)) replays = self._append_replay(replay) return MemoryMappedTable(self.table.set_column(*args, **kwargs), self.path, replays) def rename_columns(self, *args, **kwargs): """ Create new table with columns renamed to provided names. """ replay = ("rename_columns", copy.deepcopy(args), copy.deepcopy(kwargs)) replays = self._append_replay(replay) return MemoryMappedTable(self.table.rename_columns(*args, **kwargs), self.path, replays) def drop(self, *args, **kwargs): """ Drop one or more columns and return a new table. Args: columns (`List[str]`): List of field names referencing existing columns. Raises: `KeyError` : if any of the passed columns name are not existing. Returns: `datasets.table.Table`: New table without the columns. """ replay = ("drop", copy.deepcopy(args), copy.deepcopy(kwargs)) replays = self._append_replay(replay) return MemoryMappedTable(self.table.drop(*args, **kwargs), self.path, replays) def select(self, *args, **kwargs): """ Select columns of the table. Returns a new table with the specified columns, and metadata preserved. Args: columns (:obj:`Union[List[str], List[int]]`): The column names or integer indices to select. Returns: :class:`datasets.table.Table`: New table with the specified columns, and metadata preserved. """ replay = ("select", copy.deepcopy(args), copy.deepcopy(kwargs)) replays = self._append_replay(replay) return MemoryMappedTable(self.table.select(*args, **kwargs), self.path, replays) # A ConcatenationTable is the concatenation of several tables. # The ``blocks`` attributes stores a list of list of blocks. # The first axis concatenates the tables along the axis 0 (it appends rows), # while the second axis concatenates tables along the axis 1 (it appends columns). TableBlockContainer = TypeVar("TableBlockContainer", TableBlock, List[TableBlock], List[List[TableBlock]]) class ConcatenationTable(Table): """ The table comes from the concatenation of several tables called blocks. It enables concatenation on both axis 0 (append rows) and axis 1 (append columns). The underlying tables are called "blocks" and can be either `InMemoryTable` or `MemoryMappedTable` objects. This allows to combine tables that come from memory or that are memory mapped. When a `ConcatenationTable` is pickled, then each block is pickled: - the `InMemoryTable` objects are pickled by copying all the data in memory. - the MemoryMappedTable objects are pickled without copying the data into memory. Instead, only the path to the memory mapped arrow file is pickled, as well as the list of transforms to "replays" when reloading the table from the disk. Its implementation requires to store each block separately. The `blocks` attributes stores a list of list of blocks. The first axis concatenates the tables along the axis 0 (it appends rows), while the second axis concatenates tables along the axis 1 (it appends columns). If some columns are missing when concatenating on axis 0, they are filled with null values. This is done using `pyarrow.concat_tables(tables, promote=True)`. You can access the fully combined table by accessing the `ConcatenationTable.table` attribute, and the blocks by accessing the `ConcatenationTable.blocks` attribute. """ def __init__(self, table: pa.Table, blocks: List[List[TableBlock]]): super().__init__(table) self.blocks = blocks # Check that all the blocks have the right type. # Only InMemoryTable and MemoryMappedTable are allowed. for subtables in blocks: for subtable in subtables: if not isinstance(subtable, TableBlock): raise TypeError( "The blocks of a ConcatenationTable must be InMemoryTable or MemoryMappedTable objects" f", but got {subtable}." ) def __getstate__(self): return {"blocks": self.blocks} def __setstate__(self, state): blocks = state["blocks"] table = self._concat_blocks_horizontally_and_vertically(blocks) ConcatenationTable.__init__(self, table, blocks=blocks) @staticmethod def _concat_blocks(blocks: List[Union[TableBlock, pa.Table]], axis: int = 0) -> pa.Table: pa_tables = [table.table if hasattr(table, "table") else table for table in blocks] if axis == 0: # we set promote=True to fill missing columns with null values return pa.concat_tables(pa_tables, promote=True) elif axis == 1: for i, table in enumerate(pa_tables): if i == 0: pa_table = table else: for name, col in zip(table.column_names, table.columns): pa_table = pa_table.append_column(name, col) return pa_table else: raise ValueError("'axis' must be either 0 or 1") @classmethod def _concat_blocks_horizontally_and_vertically(cls, blocks: List[List[TableBlock]]) -> pa.Table: pa_tables_to_concat_vertically = [] for i, tables in enumerate(blocks): if not tables: continue pa_table_horizontally_concatenated = cls._concat_blocks(tables, axis=1) pa_tables_to_concat_vertically.append(pa_table_horizontally_concatenated) return cls._concat_blocks(pa_tables_to_concat_vertically, axis=0) @classmethod def _merge_blocks(cls, blocks: TableBlockContainer, axis: Optional[int] = None) -> TableBlockContainer: if axis is not None: merged_blocks = [] for is_in_memory, block_group in groupby(blocks, key=lambda x: isinstance(x, InMemoryTable)): if is_in_memory: block_group = [InMemoryTable(cls._concat_blocks(list(block_group), axis=axis))] merged_blocks += list(block_group) else: # both merged_blocks = [cls._merge_blocks(row_block, axis=1) for row_block in blocks] if all(len(row_block) == 1 for row_block in merged_blocks): merged_blocks = cls._merge_blocks( [block for row_block in merged_blocks for block in row_block], axis=0 ) return merged_blocks @classmethod def _consolidate_blocks(cls, blocks: TableBlockContainer) -> TableBlockContainer: if isinstance(blocks, TableBlock): return blocks elif isinstance(blocks[0], TableBlock): return cls._merge_blocks(blocks, axis=0) else: return cls._merge_blocks(blocks) @classmethod def from_blocks(cls, blocks: TableBlockContainer) -> "ConcatenationTable": blocks = cls._consolidate_blocks(blocks) if isinstance(blocks, TableBlock): table = blocks return cls(table.table, [[table]]) elif isinstance(blocks[0], TableBlock): table = cls._concat_blocks(blocks, axis=0) blocks = [[t] for t in blocks] return cls(table, blocks) else: table = cls._concat_blocks_horizontally_and_vertically(blocks) return cls(table, blocks) @classmethod def from_tables(cls, tables: List[Union[pa.Table, Table]], axis: int = 0) -> "ConcatenationTable": """Create `ConcatenationTable` from list of tables. Args: tables (list of `Table` or list of `pyarrow.Table`): List of tables. axis (`{0, 1}`, defaults to `0`, meaning over rows): Axis to concatenate over, where `0` means over rows (vertically) and `1` means over columns (horizontally). <Added version="1.6.0"/> """ def to_blocks(table: Union[pa.Table, Table]) -> List[List[TableBlock]]: if isinstance(table, pa.Table): return [[InMemoryTable(table)]] elif isinstance(table, ConcatenationTable): return copy.deepcopy(table.blocks) else: return [[table]] def _slice_row_block(row_block: List[TableBlock], length: int) -> Tuple[List[TableBlock], List[TableBlock]]: sliced = [table.slice(0, length) for table in row_block] remainder = [table.slice(length, len(row_block[0]) - length) for table in row_block] return sliced, remainder def _split_both_like( result: List[List[TableBlock]], blocks: List[List[TableBlock]] ) -> Tuple[List[List[TableBlock]], List[List[TableBlock]]]: """ Make sure each row_block contain the same num_rows to be able to concatenate them on axis=1. To do so, we modify both blocks sets to have the same row_blocks boundaries. For example, if `result` has 2 row_blocks of 3 rows and `blocks` has 3 row_blocks of 2 rows, we modify both to have 4 row_blocks of size 2, 1, 1 and 2: [ x x x | x x x ] + [ y y | y y | y y ] ----------------------------- = [ x x | x | x | x x ] [ y y | y | y | y y ] """ result, blocks = list(result), list(blocks) new_result, new_blocks = [], [] while result and blocks: # we slice the longest row block to save two row blocks of same length # and we replace the long row block by its remainder if necessary if len(result[0][0]) > len(blocks[0][0]): new_blocks.append(blocks[0]) sliced, result[0] = _slice_row_block(result[0], len(blocks.pop(0)[0])) new_result.append(sliced) elif len(result[0][0]) < len(blocks[0][0]): new_result.append(result[0]) sliced, blocks[0] = _slice_row_block(blocks[0], len(result.pop(0)[0])) new_blocks.append(sliced) else: new_result.append(result.pop(0)) new_blocks.append(blocks.pop(0)) if result or blocks: raise ValueError("Failed to concatenate on axis=1 because tables don't have the same number of rows") return new_result, new_blocks def _extend_blocks( result: List[List[TableBlock]], blocks: List[List[TableBlock]], axis: int = 0 ) -> List[List[TableBlock]]: if axis == 0: result.extend(blocks) elif axis == 1: # We make sure each row_block have the same num_rows result, blocks = _split_both_like(result, blocks) for i, row_block in enumerate(blocks): result[i].extend(row_block) return result blocks = to_blocks(tables[0]) for table in tables[1:]: table_blocks = to_blocks(table) blocks = _extend_blocks(blocks, table_blocks, axis=axis) return cls.from_blocks(blocks) @property def _slices(self): offset = 0 for tables in self.blocks: length = len(tables[0]) yield (offset, length) offset += length def slice(self, offset=0, length=None): """ Compute zero-copy slice of this Table. Args: offset (`int`, defaults to `0`): Offset from start of table to slice. length (`int`, defaults to `None`): Length of slice (default is until end of table starting from offset). Returns: `datasets.table.Table` """ table = self.table.slice(offset, length=length) length = length if length is not None else self.num_rows - offset blocks = [] for tables in self.blocks: n_rows = len(tables[0]) if length == 0: break elif n_rows <= offset: offset = offset - n_rows elif n_rows <= offset + length: blocks.append([t.slice(offset) for t in tables]) length, offset = length + offset - n_rows, 0 else: blocks.append([t.slice(offset, length) for t in tables]) length, offset = 0, 0 return ConcatenationTable(table, blocks) def filter(self, mask, *args, **kwargs): """ Select records from a Table. See `pyarrow.compute.filter` for full usage. """ table = self.table.filter(mask, *args, **kwargs) blocks = [] for (offset, length), tables in zip(self._slices, self.blocks): submask = mask.slice(offset, length) blocks.append([t.filter(submask, *args, **kwargs) for t in tables]) return ConcatenationTable(table, blocks) def flatten(self, *args, **kwargs): """ Flatten this Table. Each column with a struct type is flattened into one column per struct field. Other columns are left unchanged. Args: memory_pool (`MemoryPool`, defaults to `None`): For memory allocations, if required, otherwise use default pool. Returns: `datasets.table.Table` """ table = table_flatten(self.table, *args, **kwargs) blocks = [] for tables in self.blocks: blocks.append([t.flatten(*args, **kwargs) for t in tables]) return ConcatenationTable(table, blocks) def combine_chunks(self, *args, **kwargs): """ Make a new table by combining the chunks this table has. All the underlying chunks in the `ChunkedArray` of each column are concatenated into zero or one chunk. Args: memory_pool (`MemoryPool`, defaults to `None`): For memory allocations, if required, otherwise use default pool. Returns: `datasets.table.Table` """ table = self.table.combine_chunks(*args, **kwargs) blocks = [] for tables in self.blocks: blocks.append([t.combine_chunks(*args, **kwargs) for t in tables]) return ConcatenationTable(table, blocks) def cast(self, target_schema, *args, **kwargs): """ Cast table values to another schema. Args: target_schema (`Schema`): Schema to cast to, the names and order of fields must match. safe (`bool`, defaults to `True`): Check for overflows or other unsafe conversions. Returns: `datasets.table.Table` """ from .features import Features table = table_cast(self.table, target_schema, *args, **kwargs) target_features = Features.from_arrow_schema(target_schema) blocks = [] for subtables in self.blocks: new_tables = [] fields = list(target_schema) for subtable in subtables: subfields = [] for name in subtable.column_names: subfields.append(fields.pop(next(i for i, field in enumerate(fields) if field.name == name))) subfeatures = Features({subfield.name: target_features[subfield.name] for subfield in subfields}) subschema = subfeatures.arrow_schema new_tables.append(subtable.cast(subschema, *args, **kwargs)) blocks.append(new_tables) return ConcatenationTable(table, blocks) def replace_schema_metadata(self, *args, **kwargs): """ EXPERIMENTAL: Create shallow copy of table by replacing schema key-value metadata with the indicated new metadata (which may be `None`, which deletes any existing metadata). Args: metadata (`dict`, defaults to `None`): Returns: `datasets.table.Table`: shallow_copy """ table = self.table.replace_schema_metadata(*args, **kwargs) blocks = [] for tables in self.blocks: blocks.append([t.replace_schema_metadata(*args, **kwargs) for t in tables]) return ConcatenationTable(table, self.blocks) def add_column(self, *args, **kwargs): """ Add column to Table at position. A new table is returned with the column added, the original table object is left unchanged. Args: i (`int`): Index to place the column at. field_ (`Union[str, pyarrow.Field]`): If a string is passed then the type is deduced from the column data. column (`Union[pyarrow.Array, List[pyarrow.Array]]`): Column data. Returns: `datasets.table.Table`: New table with the passed column added. """ raise NotImplementedError() def append_column(self, *args, **kwargs): """ Append column at end of columns. Args: field_ (`Union[str, pyarrow.Field]`): If a string is passed then the type is deduced from the column data. column (`Union[pyarrow.Array, List[pyarrow.Array]]`): Column data. Returns: `datasets.table.Table`: New table with the passed column added. """ raise NotImplementedError() def remove_column(self, i, *args, **kwargs): """ Create new Table with the indicated column removed. Args: i (`int`): Index of column to remove. Returns: `datasets.table.Table`: New table without the column. """ table = self.table.remove_column(i, *args, **kwargs) name = self.table.column_names[i] blocks = [] for tables in self.blocks: blocks.append( [ t.remove_column(t.column_names.index(name), *args, **kwargs) if name in t.column_names else t for t in tables ] ) return ConcatenationTable(table, blocks) def set_column(self, *args, **kwargs): """ Replace column in Table at position. Args: i (`int`): Index to place the column at. field_ (`Union[str, pyarrow.Field]`): If a string is passed then the type is deduced from the column data. column (`Union[pyarrow.Array, List[pyarrow.Array]]`): Column data. Returns: `datasets.table.Table`: New table with the passed column set. """ raise NotImplementedError() def rename_columns(self, names, *args, **kwargs): """ Create new table with columns renamed to provided names. """ table = self.table.rename_columns(names, *args, **kwargs) names = dict(zip(self.table.column_names, names)) blocks = [] for tables in self.blocks: blocks.append( [t.rename_columns([names[name] for name in t.column_names], *args, **kwargs) for t in tables] ) return ConcatenationTable(table, blocks) def drop(self, columns, *args, **kwargs): """ Drop one or more columns and return a new table. Args: columns (`List[str]`): List of field names referencing existing columns. Raises: `KeyError` : if any of the passed columns name are not existing. Returns: `datasets.table.Table`: New table without the columns. """ table = self.table.drop(columns, *args, **kwargs) blocks = [] for tables in self.blocks: blocks.append([t.drop([c for c in columns if c in t.column_names], *args, **kwargs) for t in tables]) return ConcatenationTable(table, blocks) def select(self, columns, *args, **kwargs): """ Select columns of the table. Returns a new table with the specified columns, and metadata preserved. Args: columns (:obj:`Union[List[str], List[int]]`): The column names or integer indices to select. Returns: :class:`datasets.table.Table`: New table with the specified columns, and metadata preserved. """ table = self.table.select(columns, *args, **kwargs) blocks = [] for tables in self.blocks: blocks.append([t.select([c for c in columns if c in t.column_names], *args, **kwargs) for t in tables]) return ConcatenationTable(table, blocks) def concat_tables(tables: List[Table], axis: int = 0) -> Table: """ Concatenate tables. Args: tables (list of `Table`): List of tables to be concatenated. axis (`{0, 1}`, defaults to `0`, meaning over rows): Axis to concatenate over, where `0` means over rows (vertically) and `1` means over columns (horizontally). <Added version="1.6.0"/> Returns: `datasets.table.Table`: If the number of input tables is > 1, then the returned table is a `datasets.table.ConcatenationTable`. Otherwise if there's only one table, it is returned as is. """ tables = list(tables) if len(tables) == 1: return tables[0] return ConcatenationTable.from_tables(tables, axis=axis) def list_table_cache_files(table: Table) -> List[str]: """ Get the cache files that are loaded by the table. Cache file are used when parts of the table come from the disk via memory mapping. Returns: `List[str]`: A list of paths to the cache files loaded by the table. """ if isinstance(table, ConcatenationTable): cache_files = [] for subtables in table.blocks: for subtable in subtables: cache_files += list_table_cache_files(subtable) return cache_files elif isinstance(table, MemoryMappedTable): return [table.path] else: return [] def _wrap_for_chunked_arrays(func): """Apply the function on each chunk of a `pyarrow.ChunkedArray`, or on the array directly""" def wrapper(array, *args, **kwargs): if isinstance(array, pa.ChunkedArray): return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) else: return func(array, *args, **kwargs) return wrapper def _is_extension_type(pa_type: pa.DataType) -> bool: """ Check (recursively) if a pyarrow type is an extension type. """ if isinstance(pa_type, pa.StructType): return any(_is_extension_type(field.type) for field in pa_type) elif isinstance(pa_type, (pa.ListType, pa.FixedSizeListType, pa.LargeListType)): return _is_extension_type(pa_type.value_type) elif isinstance(pa_type, pa.ExtensionType): return True else: return False def array_concat(arrays: List[pa.Array]): """Improved version of pa.concat_arrays It supports concatenating pa.ExtensionArray objects by concatenating the underlying storages. Args: arrays (List[pa.Array]): List of arrays to contatenate Raises: pa.ArrowInvalid: if the arrow array concatenation fails ValueError: if the list of arrays is empty TypeError: if the arrays to be concatenated have different types Returns: array (:obj:`pyarrow.Array`): the concatenated array """ arrays = list(arrays) array_types = {array.type for array in arrays} if not array_types: raise ValueError("Couldn't concatenate empty list of arrays") if len(array_types) > 1: array_types = list(array_types) raise TypeError(f"Couldn't concatenate arrays with different types {array_types[0]} and {array_types[1]}") array_type = arrays[0].type arrays = [chunk for arr in arrays for chunk in (arr.chunks if isinstance(arr, pa.ChunkedArray) else (arr,))] if not _is_extension_type(array_type): return pa.concat_arrays(arrays) def _offsets_concat(offsets): offset = offsets[0] concatenated_offsets = offset for offset in offsets[1:]: offset = pc.subtract(offset, offset[0]) offset = pc.add(offset[1:], concatenated_offsets[-1]) concatenated_offsets = pa.concat_arrays([concatenated_offsets, offset]) return concatenated_offsets def _concat_arrays(arrays): array_type = arrays[0].type if isinstance(array_type, pa.PyExtensionType): return array_type.wrap_array(_concat_arrays([array.storage for array in arrays])) elif pa.types.is_struct(array_type): return pa.StructArray.from_arrays( [_concat_arrays([array.field(field.name) for array in arrays]) for field in array_type], fields=list(array_type), mask=pa.concat_arrays([array.is_null() for array in arrays]), ) elif pa.types.is_list(array_type): if any(array.null_count > 0 for array in arrays): if config.PYARROW_VERSION.major < 10: warnings.warn( "None values are converted to empty lists in `pyarrow<10.0.0` when concatenating list arrays with None values. Install `pyarrow>=10.0.0` to avoid this behavior. More info: https://github.com/huggingface/datasets/issues/3676." ) else: return pa.ListArray.from_arrays( _offsets_concat([array.offsets for array in arrays]), _concat_arrays([array.values for array in arrays]), mask=pa.concat_arrays([array.is_null() for array in arrays]), ) return pa.ListArray.from_arrays( _offsets_concat([array.offsets for array in arrays]), _concat_arrays([array.values for array in arrays]), ) elif pa.types.is_fixed_size_list(array_type): if config.PYARROW_VERSION.major < 14: # PyArrow bug: https://github.com/apache/arrow/issues/35360 return pa.FixedSizeListArray.from_arrays( _concat_arrays([array.values[array.offset * array.type.list_size :] for array in arrays]), array_type.list_size, ) else: return pa.FixedSizeListArray.from_arrays( _concat_arrays([array.values for array in arrays]), array_type.value_type, array_type.list_size, ) return pa.concat_arrays(arrays) return _concat_arrays(arrays) @_wrap_for_chunked_arrays def array_cast(array: pa.Array, pa_type: pa.DataType, allow_number_to_str=True): """Improved version of `pa.Array.cast` It supports casting `pa.StructArray` objects to re-order the fields. It also let you control certain aspects of the casting, e.g. whether to disable numbers (`floats` or `ints`) to strings. Args: array (`pa.Array`): PyArrow array to cast pa_type (`pa.DataType`): Target PyArrow type allow_number_to_str (`bool`, defaults to `True`): Whether to allow casting numbers to strings. Defaults to `True`. Raises: `pa.ArrowInvalidError`: if the arrow data casting fails `TypeError`: if the target type is not supported according, e.g. - if a field is missing - if casting from numbers to strings and `allow_number_to_str` is `False` Returns: `List[pyarrow.Array]`: the casted array """ _c = partial(array_cast, allow_number_to_str=allow_number_to_str) if isinstance(array, pa.ExtensionArray): array = array.storage if isinstance(pa_type, pa.ExtensionType): return pa_type.wrap_array(array) elif array.type == pa_type: return array elif pa.types.is_struct(array.type): if pa.types.is_struct(pa_type) and ({field.name for field in pa_type} == {field.name for field in array.type}): if array.type.num_fields == 0: return array arrays = [_c(array.field(field.name), field.type) for field in pa_type] return pa.StructArray.from_arrays(arrays, fields=list(pa_type), mask=array.is_null()) elif pa.types.is_list(array.type): if pa.types.is_fixed_size_list(pa_type): if pa_type.list_size * len(array) == len(array.values): return pa.FixedSizeListArray.from_arrays( _c(array.values, pa_type.value_type), pa_type.list_size, ) elif pa.types.is_list(pa_type): if array.null_count > 0: if config.PYARROW_VERSION.major < 10: warnings.warn( f"None values are converted to empty lists in `pyarrow<10.0.0` when converting array to {pa_type}. Install `pyarrow>=10.0.0` to avoid this behavior. More info: https://github.com/huggingface/datasets/issues/3676." ) else: return pa.ListArray.from_arrays( array.offsets, _c(array.values, pa_type.value_type), mask=array.is_null() ) return pa.ListArray.from_arrays(array.offsets, _c(array.values, pa_type.value_type)) elif pa.types.is_fixed_size_list(array.type): array_values = array.values if config.PYARROW_VERSION.major < 14: # PyArrow bug: https://github.com/apache/arrow/issues/35360 array_values = array.values[array.offset * array.type.list_size :] if pa.types.is_fixed_size_list(pa_type): return pa.FixedSizeListArray.from_arrays( _c(array_values, pa_type.value_type), pa_type.list_size, ) elif pa.types.is_list(pa_type): offsets_arr = pa.array(np.arange(len(array) + 1) * array.type.list_size, pa.int32()) if array.null_count > 0: if config.PYARROW_VERSION.major < 10: warnings.warn( f"None values are converted to empty lists in `pyarrow<10.0.0` when converting array to {pa_type}. Install `pyarrow>=10.0.0` to avoid this behavior. More info: https://github.com/huggingface/datasets/issues/3676." ) else: return pa.ListArray.from_arrays( offsets_arr, _c(array_values, pa_type.value_type), mask=array.is_null() ) return pa.ListArray.from_arrays(offsets_arr, _c(array_values, pa_type.value_type)) else: if ( not allow_number_to_str and pa.types.is_string(pa_type) and (pa.types.is_floating(array.type) or pa.types.is_integer(array.type)) ): raise TypeError( f"Couldn't cast array of type {array.type} to {pa_type} since allow_number_to_str is set to {allow_number_to_str}" ) if pa.types.is_null(pa_type) and not pa.types.is_null(array.type): raise TypeError(f"Couldn't cast array of type {array.type} to {pa_type}") return array.cast(pa_type) raise TypeError(f"Couldn't cast array of type\n{array.type}\nto\n{pa_type}") @_wrap_for_chunked_arrays def cast_array_to_feature(array: pa.Array, feature: "FeatureType", allow_number_to_str=True): """Cast an array to the arrow type that corresponds to the requested feature type. For custom features like [`Audio`] or [`Image`], it takes into account the "cast_storage" methods they defined to enable casting from other arrow types. Args: array (`pa.Array`): The PyArrow array to cast. feature (`datasets.features.FeatureType`): The target feature type. allow_number_to_str (`bool`, defaults to `True`): Whether to allow casting numbers to strings. Defaults to `True`. Raises: `pa.ArrowInvalidError`: if the arrow data casting fails `TypeError`: if the target type is not supported according, e.g. - if a field is missing - if casting from numbers to strings and `allow_number_to_str` is `False` Returns: array (`pyarrow.Array`): the casted array """ from .features.features import Sequence, get_nested_type _c = partial(cast_array_to_feature, allow_number_to_str=allow_number_to_str) if isinstance(array, pa.ExtensionArray): array = array.storage if hasattr(feature, "cast_storage"): return feature.cast_storage(array) elif pa.types.is_struct(array.type): # feature must be a dict or Sequence(subfeatures_dict) if isinstance(feature, Sequence) and isinstance(feature.feature, dict): feature = { name: Sequence(subfeature, length=feature.length) for name, subfeature in feature.feature.items() } if isinstance(feature, dict) and {field.name for field in array.type} == set(feature): if array.type.num_fields == 0: return array arrays = [_c(array.field(name), subfeature) for name, subfeature in feature.items()] return pa.StructArray.from_arrays(arrays, names=list(feature), mask=array.is_null()) elif pa.types.is_list(array.type): # feature must be either [subfeature] or Sequence(subfeature) if isinstance(feature, list): casted_values = _c(array.values, feature[0]) if casted_values.type == array.values.type: return array else: if array.null_count > 0: if config.PYARROW_VERSION.major < 10: warnings.warn( f"None values are converted to empty lists in `pyarrow<10.0.0` when converting array to {feature}. Install `pyarrow>=10.0.0` to avoid this behavior. More info: https://github.com/huggingface/datasets/issues/3676." ) else: return pa.ListArray.from_arrays(array.offsets, casted_values, mask=array.is_null()) return pa.ListArray.from_arrays(array.offsets, casted_values) elif isinstance(feature, Sequence): if feature.length > -1: if feature.length * len(array) == len(array.values): return pa.FixedSizeListArray.from_arrays(_c(array.values, feature.feature), feature.length) else: casted_values = _c(array.values, feature.feature) if casted_values.type == array.values.type: return array else: if array.null_count > 0: if config.PYARROW_VERSION.major < 10: warnings.warn( f"None values are converted to empty lists in `pyarrow<10.0.0` when converting array to {feature}. Install `pyarrow>=10.0.0` to avoid this behavior. More info: https://github.com/huggingface/datasets/issues/3676." ) else: return pa.ListArray.from_arrays( array.offsets, _c(array.values, feature.feature), mask=array.is_null() ) return pa.ListArray.from_arrays(array.offsets, _c(array.values, feature.feature)) elif pa.types.is_fixed_size_list(array.type): # feature must be either [subfeature] or Sequence(subfeature) array_values = array.values if config.PYARROW_VERSION.major < 14: # PyArrow bug: https://github.com/apache/arrow/issues/35360 array_values = array.values[array.offset * array.type.list_size :] if isinstance(feature, list): if array.null_count > 0: if config.PYARROW_VERSION.major < 10: warnings.warn( f"None values are converted to empty lists when converting array to {feature}. Install `pyarrow>=10.0.0` to avoid this behavior. More info: https://github.com/huggingface/datasets/issues/3676. This will raise an error in a future major version of `datasets`" ) else: return pa.ListArray.from_arrays(array.offsets, _c(array_values, feature[0]), mask=array.is_null()) return pa.ListArray.from_arrays(array.offsets, _c(array_values, feature[0])) elif isinstance(feature, Sequence): if feature.length > -1: if feature.length * len(array) == len(array_values): return pa.FixedSizeListArray.from_arrays(_c(array_values, feature.feature), feature.length) else: offsets_arr = pa.array(np.arange(len(array) + 1) * array.type.list_size, pa.int32()) if array.null_count > 0: if config.PYARROW_VERSION.major < 10: warnings.warn( f"None values are converted to empty lists when converting array to {feature}. Install `pyarrow>=10.0.0` to avoid this behavior. More info: https://github.com/huggingface/datasets/issues/3676. This will raise an error in a future major version of `datasets`" ) else: return pa.ListArray.from_arrays( offsets_arr, _c(array_values, feature.feature), mask=array.is_null() ) return pa.ListArray.from_arrays(offsets_arr, _c(array_values, feature.feature)) if pa.types.is_null(array.type): return array_cast(array, get_nested_type(feature), allow_number_to_str=allow_number_to_str) elif not isinstance(feature, (Sequence, dict, list, tuple)): return array_cast(array, feature(), allow_number_to_str=allow_number_to_str) raise TypeError(f"Couldn't cast array of type\n{array.type}\nto\n{feature}") @_wrap_for_chunked_arrays def embed_array_storage(array: pa.Array, feature: "FeatureType"): """Embed data into an arrays's storage. For custom features like Audio or Image, it takes into account the "embed_storage" methods they defined to enable embedding external data (e.g. an image file) into an other arrow types. <Added version="2.4.0"/> Args: array (`pa.Array`): The PyArrow array in which to embed data. feature (`datasets.features.FeatureType`): Array features. Raises: `TypeError`: if the target type is not supported according, e.g. - if a field is missing Returns: array (`pyarrow.Array`): the casted array """ from .features import Sequence _e = embed_array_storage if isinstance(array, pa.ExtensionArray): array = array.storage if hasattr(feature, "embed_storage"): return feature.embed_storage(array) elif pa.types.is_struct(array.type): # feature must be a dict or Sequence(subfeatures_dict) if isinstance(feature, Sequence) and isinstance(feature.feature, dict): feature = { name: Sequence(subfeature, length=feature.length) for name, subfeature in feature.feature.items() } if isinstance(feature, dict): arrays = [_e(array.field(name), subfeature) for name, subfeature in feature.items()] return pa.StructArray.from_arrays(arrays, names=list(feature), mask=array.is_null()) elif pa.types.is_list(array.type): # feature must be either [subfeature] or Sequence(subfeature) if isinstance(feature, list): if array.null_count > 0: if config.PYARROW_VERSION.major < 10: warnings.warn( f"None values are converted to empty lists when embedding array storage with {feature}. Install `pyarrow>=10.0.0` to avoid this behavior. More info: https://github.com/huggingface/datasets/issues/3676. This will raise an error in a future major version of `datasets`" ) else: return pa.ListArray.from_arrays(array.offsets, _e(array.values, feature[0]), mask=array.is_null()) return pa.ListArray.from_arrays(array.offsets, _e(array.values, feature[0])) elif isinstance(feature, Sequence): if feature.length > -1: if feature.length * len(array) == len(array.values): return pa.FixedSizeListArray.from_arrays(_e(array.values, feature.feature), feature.length) else: casted_values = _e(array.values, feature.feature) if casted_values.type == array.values.type: return array else: if array.null_count > 0: if config.PYARROW_VERSION.major < 10: warnings.warn( f"None values are converted to empty lists when embedding array storage with {feature}. Install `pyarrow>=10.0.0` to avoid this behavior. More info: https://github.com/huggingface/datasets/issues/3676. This will raise an error in a future major version of `datasets`" ) else: return pa.ListArray.from_arrays( array.offsets, _e(array.values, feature.feature), mask=array.is_null() ) return pa.ListArray.from_arrays(array.offsets, _e(array.values, feature.feature)) elif pa.types.is_fixed_size_list(array.type): # feature must be either [subfeature] or Sequence(subfeature) array_values = array.values if config.PYARROW_VERSION.major < 14: # PyArrow bug: https://github.com/apache/arrow/issues/35360 array_values = array.values[array.offset * array.type.list_size :] if isinstance(feature, list): if array.null_count > 0: if config.PYARROW_VERSION.major < 10: warnings.warn( f"None values are converted to empty lists when embedding array storage with {feature}. Install `pyarrow>=10.0.0` to avoid this behavior. More info: https://github.com/huggingface/datasets/issues/3676. This will raise an error in a future major version of `datasets`" ) else: return pa.ListArray.from_arrays(array.offsets, _e(array_values, feature[0]), mask=array.is_null()) return pa.ListArray.from_arrays(array.offsets, _e(array_values, feature[0])) elif isinstance(feature, Sequence): if feature.length > -1: if feature.length * len(array) == len(array_values): return pa.FixedSizeListArray.from_arrays(_e(array_values, feature.feature), feature.length) else: offsets_arr = pa.array(np.arange(len(array) + 1) * array.type.list_size, pa.int32()) if array.null_count > 0: if config.PYARROW_VERSION.major < 10: warnings.warn( f"None values are converted to empty lists when embedding array storage with {feature}. Install `pyarrow>=10.0.0` to avoid this behavior. More info: https://github.com/huggingface/datasets/issues/3676. This will raise an error in a future major version of `datasets`" ) else: return pa.ListArray.from_arrays( offsets_arr, _e(array_values, feature.feature), mask=array.is_null() ) return pa.ListArray.from_arrays(offsets_arr, _e(array_values, feature.feature)) if not isinstance(feature, (Sequence, dict, list, tuple)): return array raise TypeError(f"Couldn't embed array of type\n{array.type}\nwith\n{feature}") def cast_table_to_features(table: pa.Table, features: "Features"): """Cast a table to the arrow schema that corresponds to the requested features. Args: table (`pyarrow.Table`): PyArrow table to cast. features ([`Features`]): Target features. Returns: table (`pyarrow.Table`): the casted table """ if sorted(table.column_names) != sorted(features): raise ValueError(f"Couldn't cast\n{table.schema}\nto\n{features}\nbecause column names don't match") arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] return pa.Table.from_arrays(arrays, schema=features.arrow_schema) def cast_table_to_schema(table: pa.Table, schema: pa.Schema): """Cast a table to the arrow schema. Different from `cast_table_to_features`, this method can preserve nullability. Args: table (`pa.Table`): PyArrow table to cast. features ([`Features`]): Target features. Returns: `pa.Table`: the casted table """ from .features import Features features = Features.from_arrow_schema(schema) if sorted(table.column_names) != sorted(features): raise ValueError(f"Couldn't cast\n{table.schema}\nto\n{features}\nbecause column names don't match") arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] return pa.Table.from_arrays(arrays, schema=schema) def embed_table_storage(table: pa.Table): """Embed external data into a table's storage. <Added version="2.4.0"/> Args: table (`pyarrow.Table`): PyArrow table in which to embed data. Returns: table (`pyarrow.Table`): the table with embedded data """ from .features.features import Features, require_storage_embed features = Features.from_arrow_schema(table.schema) arrays = [ embed_array_storage(table[name], feature) if require_storage_embed(feature) else table[name] for name, feature in features.items() ] return pa.Table.from_arrays(arrays, schema=features.arrow_schema) def table_cast(table: pa.Table, schema: pa.Schema): """Improved version of `pa.Table.cast`. It supports casting to feature types stored in the schema metadata. Args: table (`pyarrow.Table`): PyArrow table to cast. schema (`pyarrow.Schema`): Target PyArrow schema. Returns: table (`pyarrow.Table`): the casted table """ if table.schema != schema: return cast_table_to_schema(table, schema) elif table.schema.metadata != schema.metadata: return table.replace_schema_metadata(schema.metadata) else: return table def table_flatten(table: pa.Table): """Improved version of `pa.Table.flatten`. It behaves as `pa.Table.flatten` in a sense it does 1-step flatten of the columns with a struct type into one column per struct field, but updates the metadata and skips decodable features unless the `decode` attribute of these features is set to False. Args: table (`pa.Table`): PyArrow table to flatten. Returns: `Table`: the flattened table """ from .features import Features features = Features.from_arrow_schema(table.schema) if any(hasattr(subfeature, "flatten") and subfeature.flatten() == subfeature for subfeature in features.values()): flat_arrays = [] flat_column_names = [] for field in table.schema: array = table.column(field.name) subfeature = features[field.name] if pa.types.is_struct(field.type) and ( not hasattr(subfeature, "flatten") or subfeature.flatten() != subfeature ): flat_arrays.extend(array.flatten()) flat_column_names.extend([f"{field.name}.{subfield.name}" for subfield in field.type]) else: flat_arrays.append(array) flat_column_names.append(field.name) flat_table = pa.Table.from_arrays( flat_arrays, names=flat_column_names, ) else: flat_table = table.flatten() # Preserve complex types in the metadata flat_features = features.flatten(max_depth=2) flat_features = Features({column_name: flat_features[column_name] for column_name in flat_table.column_names}) return flat_table.replace_schema_metadata(flat_features.arrow_schema.metadata) def table_visitor(table: pa.Table, function: Callable[[pa.Array], None]): """Visit all arrays in a table and apply a function to them. Args: table (`pyarrow.Table`): PyArrow table to visit. function (`Callable[[pa.Array], None]`): Function to apply to each array. """ from .features import Features, Sequence features = Features.from_arrow_schema(table.schema) def _visit(array, feature): if isinstance(array, pa.ChunkedArray): for chunk in array.chunks: _visit(chunk, feature) else: if isinstance(array, pa.ExtensionArray): array = array.storage function(array, feature) if pa.types.is_struct(array.type) and not hasattr(feature, "cast_storage"): if isinstance(feature, Sequence) and isinstance(feature.feature, dict): feature = { name: Sequence(subfeature, length=feature.length) for name, subfeature in feature.feature.items() } for name, subfeature in feature.items(): _visit(array.field(name), subfeature) elif pa.types.is_list(array.type): if isinstance(feature, list): _visit(array.values, feature[0]) elif isinstance(feature, Sequence): _visit(array.values, feature.feature) for name, feature in features.items(): _visit(table[name], feature) def table_iter(table: Table, batch_size: int, drop_last_batch=False) -> Iterator[pa.Table]: """Iterate over sub-tables of size `batch_size`. Args: table (`pyarrow.Table`): PyArrow table to iterate over. batch_size (`int`): Size of each sub-table to yield. drop_last_batch (`bool`, defaults to `False`): Drop the last batch if it is smaller than `batch_size`. """ chunks_buffer = [] chunks_buffer_size = 0 for chunk in table.to_reader(max_chunksize=batch_size): if len(chunk) == 0: continue elif chunks_buffer_size + len(chunk) < batch_size: chunks_buffer.append(chunk) chunks_buffer_size += len(chunk) continue elif chunks_buffer_size + len(chunk) == batch_size: chunks_buffer.append(chunk) yield pa.Table.from_batches(chunks_buffer) chunks_buffer = [] chunks_buffer_size = 0 else: cropped_chunk_length = batch_size - chunks_buffer_size chunks_buffer.append(chunk.slice(0, cropped_chunk_length)) yield pa.Table.from_batches(chunks_buffer) chunks_buffer = [chunk.slice(cropped_chunk_length, len(chunk) - cropped_chunk_length)] chunks_buffer_size = len(chunk) - cropped_chunk_length if not drop_last_batch and chunks_buffer: yield pa.Table.from_batches(chunks_buffer)
datasets-main
src/datasets/table.py
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Access datasets.""" import filecmp import importlib import inspect import json import os import posixpath import shutil import time import warnings from collections import Counter from dataclasses import dataclass, field from pathlib import Path from typing import Any, Dict, List, Mapping, Optional, Sequence, Tuple, Type, Union import fsspec import requests from huggingface_hub import DatasetCard, DatasetCardData, HfApi from . import config from .arrow_dataset import Dataset from .builder import BuilderConfig, DatasetBuilder from .data_files import ( DEFAULT_PATTERNS_ALL, DataFilesDict, DataFilesList, EmptyDatasetError, get_data_patterns, get_metadata_patterns, sanitize_patterns, ) from .dataset_dict import DatasetDict, IterableDatasetDict from .download.download_config import DownloadConfig from .download.download_manager import DownloadMode from .download.streaming_download_manager import StreamingDownloadManager, xbasename, xglob, xjoin from .features import Features from .filesystems import extract_path_from_uri, is_remote_filesystem from .fingerprint import Hasher from .info import DatasetInfo, DatasetInfosDict from .iterable_dataset import IterableDataset from .metric import Metric from .naming import camelcase_to_snakecase, snakecase_to_camelcase from .packaged_modules import ( _EXTENSION_TO_MODULE, _MODULE_SUPPORTS_METADATA, _MODULE_TO_EXTENSIONS, _PACKAGED_DATASETS_MODULES, _hash_python_lines, ) from .splits import Split from .utils.deprecation_utils import deprecated from .utils.file_utils import ( OfflineModeIsEnabled, _raise_if_offline_mode_is_enabled, cached_path, head_hf_s3, hf_github_url, init_hf_modules, is_relative_path, relative_to_absolute_path, url_or_path_join, ) from .utils.filelock import FileLock from .utils.hub import hf_hub_url from .utils.info_utils import VerificationMode, is_small_dataset from .utils.logging import get_logger from .utils.metadata import MetadataConfigs from .utils.py_utils import get_imports from .utils.version import Version logger = get_logger(__name__) ALL_ALLOWED_EXTENSIONS = list(_EXTENSION_TO_MODULE.keys()) + [".zip"] def init_dynamic_modules( name: str = config.MODULE_NAME_FOR_DYNAMIC_MODULES, hf_modules_cache: Optional[Union[Path, str]] = None ): """ Create a module with name `name` in which you can add dynamic modules such as metrics or datasets. The module can be imported using its name. The module is created in the HF_MODULE_CACHE directory by default (~/.cache/huggingface/modules) but it can be overridden by specifying a path to another directory in `hf_modules_cache`. """ hf_modules_cache = init_hf_modules(hf_modules_cache) dynamic_modules_path = os.path.join(hf_modules_cache, name) os.makedirs(dynamic_modules_path, exist_ok=True) if not os.path.exists(os.path.join(dynamic_modules_path, "__init__.py")): with open(os.path.join(dynamic_modules_path, "__init__.py"), "w"): pass return dynamic_modules_path def import_main_class(module_path, dataset=True) -> Optional[Union[Type[DatasetBuilder], Type[Metric]]]: """Import a module at module_path and return its main class: - a DatasetBuilder if dataset is True - a Metric if dataset is False """ module = importlib.import_module(module_path) if dataset: main_cls_type = DatasetBuilder else: main_cls_type = Metric # Find the main class in our imported module module_main_cls = None for name, obj in module.__dict__.items(): if inspect.isclass(obj) and issubclass(obj, main_cls_type): if inspect.isabstract(obj): continue module_main_cls = obj obj_module = inspect.getmodule(obj) if obj_module is not None and module == obj_module: break return module_main_cls class _InitializeConfiguredDatasetBuilder: """ From https://stackoverflow.com/questions/4647566/pickle-a-dynamically-parameterized-sub-class See also ConfiguredDatasetBuilder.__reduce__ When called with the param value as the only argument, returns an un-initialized instance of the parameterized class. Subsequent __setstate__ will be called by pickle. """ def __call__(self, builder_cls, metadata_configs, default_config_name, name): # make a simple object which has no complex __init__ (this one will do) obj = _InitializeConfiguredDatasetBuilder() obj.__class__ = configure_builder_class( builder_cls, metadata_configs, default_config_name=default_config_name, dataset_name=name ) return obj def configure_builder_class( builder_cls: Type[DatasetBuilder], builder_configs: List[BuilderConfig], default_config_name: Optional[str], dataset_name: str, ) -> Type[DatasetBuilder]: """ Dynamically create a builder class with custom builder configs parsed from README.md file, i.e. set BUILDER_CONFIGS class variable of a builder class to custom configs list. """ class ConfiguredDatasetBuilder(builder_cls): BUILDER_CONFIGS = builder_configs DEFAULT_CONFIG_NAME = default_config_name __module__ = builder_cls.__module__ # so that the actual packaged builder can be imported def __reduce__(self): # to make dynamically created class pickable, see _InitializeParameterizedDatasetBuilder parent_builder_cls = self.__class__.__mro__[1] return ( _InitializeConfiguredDatasetBuilder(), ( parent_builder_cls, self.BUILDER_CONFIGS, self.DEFAULT_CONFIG_NAME, self.dataset_name, ), self.__dict__.copy(), ) ConfiguredDatasetBuilder.__name__ = ( f"{builder_cls.__name__.lower().capitalize()}{snakecase_to_camelcase(dataset_name)}" ) ConfiguredDatasetBuilder.__qualname__ = ( f"{builder_cls.__name__.lower().capitalize()}{snakecase_to_camelcase(dataset_name)}" ) return ConfiguredDatasetBuilder def get_dataset_builder_class( dataset_module: "DatasetModule", dataset_name: Optional[str] = None ) -> Type[DatasetBuilder]: builder_cls = import_main_class(dataset_module.module_path) if dataset_module.builder_configs_parameters.builder_configs: builder_cls = configure_builder_class( builder_cls, builder_configs=dataset_module.builder_configs_parameters.builder_configs, default_config_name=dataset_module.builder_configs_parameters.default_config_name, dataset_name=dataset_name, ) return builder_cls def files_to_hash(file_paths: List[str]) -> str: """ Convert a list of scripts or text files provided in file_paths into a hashed filename in a repeatable way. """ # List all python files in directories if directories are supplied as part of external imports to_use_files: List[Union[Path, str]] = [] for file_path in file_paths: if os.path.isdir(file_path): to_use_files.extend(list(Path(file_path).rglob("*.[pP][yY]"))) else: to_use_files.append(file_path) # Get the code from all these files lines = [] for file_path in to_use_files: with open(file_path, encoding="utf-8") as f: lines.extend(f.readlines()) return _hash_python_lines(lines) def increase_load_count(name: str, resource_type: str): """Update the download count of a dataset or metric.""" if not config.HF_DATASETS_OFFLINE and config.HF_UPDATE_DOWNLOAD_COUNTS: try: head_hf_s3(name, filename=name + ".py", dataset=(resource_type == "dataset")) except Exception: pass def _download_additional_modules( name: str, base_path: str, imports: Tuple[str, str, str, str], download_config: Optional[DownloadConfig] ) -> List[Tuple[str, str]]: """ Download additional module for a module <name>.py at URL (or local path) <base_path>/<name>.py The imports must have been parsed first using ``get_imports``. If some modules need to be installed with pip, an error is raised showing how to install them. This function return the list of downloaded modules as tuples (import_name, module_file_path). The downloaded modules can then be moved into an importable directory with ``_copy_script_and_other_resources_in_importable_dir``. """ local_imports = [] library_imports = [] download_config = download_config.copy() if download_config.download_desc is None: download_config.download_desc = "Downloading extra modules" for import_type, import_name, import_path, sub_directory in imports: if import_type == "library": library_imports.append((import_name, import_path)) # Import from a library continue if import_name == name: raise ValueError( f"Error in the {name} script, importing relative {import_name} module " f"but {import_name} is the name of the script. " f"Please change relative import {import_name} to another name and add a '# From: URL_OR_PATH' " f"comment pointing to the original relative import file path." ) if import_type == "internal": url_or_filename = url_or_path_join(base_path, import_path + ".py") elif import_type == "external": url_or_filename = import_path else: raise ValueError("Wrong import_type") local_import_path = cached_path( url_or_filename, download_config=download_config, ) if sub_directory is not None: local_import_path = os.path.join(local_import_path, sub_directory) local_imports.append((import_name, local_import_path)) # Check library imports needs_to_be_installed = {} for library_import_name, library_import_path in library_imports: try: lib = importlib.import_module(library_import_name) # noqa F841 except ImportError: if library_import_name not in needs_to_be_installed or library_import_path != library_import_name: needs_to_be_installed[library_import_name] = library_import_path if needs_to_be_installed: _dependencies_str = "dependencies" if len(needs_to_be_installed) > 1 else "dependency" _them_str = "them" if len(needs_to_be_installed) > 1 else "it" if "sklearn" in needs_to_be_installed.keys(): needs_to_be_installed["sklearn"] = "scikit-learn" raise ImportError( f"To be able to use {name}, you need to install the following {_dependencies_str}: " f"{', '.join(needs_to_be_installed)}.\nPlease install {_them_str} using 'pip install " f"{' '.join(needs_to_be_installed.values())}' for instance." ) return local_imports def _copy_script_and_other_resources_in_importable_dir( name: str, importable_directory_path: str, subdirectory_name: str, original_local_path: str, local_imports: List[Tuple[str, str]], additional_files: List[Tuple[str, str]], download_mode: Optional[Union[DownloadMode, str]], ) -> str: """Copy a script and its required imports to an importable directory Args: name (str): name of the resource to load importable_directory_path (str): path to the loadable folder in the dynamic modules directory subdirectory_name (str): name of the subdirectory in importable_directory_path in which to place the script original_local_path (str): local path to the resource script local_imports (List[Tuple[str, str]]): list of (destination_filename, import_file_to_copy) additional_files (List[Tuple[str, str]]): list of (destination_filename, additional_file_to_copy) download_mode (Optional[Union[DownloadMode, str]]): download mode Return: importable_local_file: path to an importable module with importlib.import_module """ # Define a directory with a unique name in our dataset or metric folder # path is: ./datasets|metrics/dataset|metric_name/hash_from_code/script.py # we use a hash as subdirectory_name to be able to have multiple versions of a dataset/metric processing file together importable_subdirectory = os.path.join(importable_directory_path, subdirectory_name) importable_local_file = os.path.join(importable_subdirectory, name + ".py") # Prevent parallel disk operations lock_path = importable_directory_path + ".lock" with FileLock(lock_path): # Create main dataset/metrics folder if needed if download_mode == DownloadMode.FORCE_REDOWNLOAD and os.path.exists(importable_directory_path): shutil.rmtree(importable_directory_path) os.makedirs(importable_directory_path, exist_ok=True) # add an __init__ file to the main dataset folder if needed init_file_path = os.path.join(importable_directory_path, "__init__.py") if not os.path.exists(init_file_path): with open(init_file_path, "w"): pass # Create hash dataset folder if needed os.makedirs(importable_subdirectory, exist_ok=True) # add an __init__ file to the hash dataset folder if needed init_file_path = os.path.join(importable_subdirectory, "__init__.py") if not os.path.exists(init_file_path): with open(init_file_path, "w"): pass # Copy dataset.py file in hash folder if needed if not os.path.exists(importable_local_file): shutil.copyfile(original_local_path, importable_local_file) # Record metadata associating original dataset path with local unique folder # Use os.path.splitext to split extension from importable_local_file meta_path = os.path.splitext(importable_local_file)[0] + ".json" if not os.path.exists(meta_path): meta = {"original file path": original_local_path, "local file path": importable_local_file} # the filename is *.py in our case, so better rename to filename.json instead of filename.py.json with open(meta_path, "w", encoding="utf-8") as meta_file: json.dump(meta, meta_file) # Copy all the additional imports for import_name, import_path in local_imports: if os.path.isfile(import_path): full_path_local_import = os.path.join(importable_subdirectory, import_name + ".py") if not os.path.exists(full_path_local_import): shutil.copyfile(import_path, full_path_local_import) elif os.path.isdir(import_path): full_path_local_import = os.path.join(importable_subdirectory, import_name) if not os.path.exists(full_path_local_import): shutil.copytree(import_path, full_path_local_import) else: raise ImportError(f"Error with local import at {import_path}") # Copy additional files like dataset_infos.json file if needed for file_name, original_path in additional_files: destination_additional_path = os.path.join(importable_subdirectory, file_name) if not os.path.exists(destination_additional_path) or not filecmp.cmp( original_path, destination_additional_path ): shutil.copyfile(original_path, destination_additional_path) return importable_local_file def _create_importable_file( local_path: str, local_imports: List[Tuple[str, str]], additional_files: List[Tuple[str, str]], dynamic_modules_path: str, module_namespace: str, name: str, download_mode: DownloadMode, ) -> Tuple[str, str]: importable_directory_path = os.path.join(dynamic_modules_path, module_namespace, name.replace("/", "--")) Path(importable_directory_path).mkdir(parents=True, exist_ok=True) (Path(importable_directory_path).parent / "__init__.py").touch(exist_ok=True) hash = files_to_hash([local_path] + [loc[1] for loc in local_imports]) importable_local_file = _copy_script_and_other_resources_in_importable_dir( name=name.split("/")[-1], importable_directory_path=importable_directory_path, subdirectory_name=hash, original_local_path=local_path, local_imports=local_imports, additional_files=additional_files, download_mode=download_mode, ) logger.debug(f"Created importable dataset file at {importable_local_file}") module_path = ".".join( [os.path.basename(dynamic_modules_path), module_namespace, name.replace("/", "--"), hash, name.split("/")[-1]] ) return module_path, hash def infer_module_for_data_files_list( data_files_list: DataFilesList, download_config: Optional[DownloadConfig] = None ) -> Optional[Tuple[str, str]]: """Infer module (and builder kwargs) from list of data files. It picks the module based on the most common file extension. In case of a draw ".parquet" is the favorite, and then alphabetical order. Args: data_files_list (DataFilesList): List of data files. download_config (bool or str, optional): mainly use use_auth_token or storage_options to support different platforms and auth types. Returns: tuple[str, dict[str, Any]]: Tuple with - inferred module name - dict of builder kwargs """ extensions_counter = Counter( "." + suffix.lower() for filepath in data_files_list[: config.DATA_FILES_MAX_NUMBER_FOR_MODULE_INFERENCE] for suffix in xbasename(filepath).split(".")[1:] ) if extensions_counter: def sort_key(ext_count: Tuple[str, int]) -> Tuple[int, bool]: """Sort by count and set ".parquet" as the favorite in case of a draw""" ext, count = ext_count return (count, ext == ".parquet", ext) for ext, _ in sorted(extensions_counter.items(), key=sort_key, reverse=True): if ext in _EXTENSION_TO_MODULE: return _EXTENSION_TO_MODULE[ext] elif ext == ".zip": return infer_module_for_data_files_list_in_archives(data_files_list, download_config=download_config) return None, {} def infer_module_for_data_files_list_in_archives( data_files_list: DataFilesList, download_config: Optional[DownloadConfig] = None ) -> Optional[Tuple[str, str]]: """Infer module (and builder kwargs) from list of archive data files. Args: data_files_list (DataFilesList): List of data files. download_config (bool or str, optional): mainly use use_auth_token or storage_options to support different platforms and auth types. Returns: tuple[str, dict[str, Any]]: Tuple with - inferred module name - dict of builder kwargs """ archived_files = [] archive_files_counter = 0 for filepath in data_files_list: if str(filepath).endswith(".zip"): archive_files_counter += 1 if archive_files_counter > config.GLOBBED_DATA_FILES_MAX_NUMBER_FOR_MODULE_INFERENCE: break extracted = xjoin(StreamingDownloadManager().extract(filepath), "**") archived_files += [ f.split("::")[0] for f in xglob(extracted, recursive=True, download_config=download_config)[ : config.ARCHIVED_DATA_FILES_MAX_NUMBER_FOR_MODULE_INFERENCE ] ] extensions_counter = Counter( "." + suffix.lower() for filepath in archived_files for suffix in xbasename(filepath).split(".")[1:] ) if extensions_counter: most_common = extensions_counter.most_common(1)[0][0] if most_common in _EXTENSION_TO_MODULE: return _EXTENSION_TO_MODULE[most_common] return None, {} def infer_module_for_data_files( data_files: DataFilesDict, path: Optional[str] = None, download_config: Optional[DownloadConfig] = None ) -> Tuple[Optional[str], Dict[str, Any]]: """Infer module (and builder kwargs) from data files. Raise if module names for different splits don't match. Args: data_files (DataFilesDict): List of data files. path (str, optional): Dataset name or path. DownloadConfig (bool or str, optional): for authenticate on the Hugging Face Hub for private remote files. Returns: tuple[str, dict[str, Any]]: Tuple with - inferred module name - builder kwargs """ split_modules = { split: infer_module_for_data_files_list(data_files_list, download_config=download_config) for split, data_files_list in data_files.items() } module_name, default_builder_kwargs = next(iter(split_modules.values())) if any((module_name, default_builder_kwargs) != split_module for split_module in split_modules.values()): raise ValueError(f"Couldn't infer the same data file format for all splits. Got {split_modules}") if not module_name: path = f" in {path}. " if path else ". " raise FileNotFoundError(f"No (supported) data files or dataset script found{path}") return module_name, default_builder_kwargs def update_hash_with_config_parameters(hash: str, config_parameters: dict) -> str: """ Used to update hash of packaged modules which is used for creating unique cache directories to reflect different config parameters which are passed in metadata from readme. """ params_to_exclude = {"config_name", "version", "description"} params_to_add_to_hash = { param: value for param, value in sorted(config_parameters.items()) if param not in params_to_exclude } m = Hasher() m.update(hash) m.update(params_to_add_to_hash) return m.hexdigest() def create_builder_configs_from_metadata_configs( module_path: str, metadata_configs: MetadataConfigs, supports_metadata: bool, base_path: Optional[str] = None, default_builder_kwargs: Dict[str, Any] = None, download_config: Optional[DownloadConfig] = None, ) -> Tuple[List[BuilderConfig], str]: builder_cls = import_main_class(module_path) builder_config_cls = builder_cls.BUILDER_CONFIG_CLASS default_config_name = metadata_configs.get_default_config_name() builder_configs = [] base_path = base_path if base_path is not None else "" for config_name, config_params in metadata_configs.items(): config_data_files = config_params.get("data_files") config_data_dir = config_params.get("data_dir") config_base_path = base_path + "/" + config_data_dir if config_data_dir else base_path try: config_patterns = ( sanitize_patterns(config_data_files) if config_data_files is not None else get_data_patterns(config_base_path) ) config_data_files_dict = DataFilesDict.from_patterns( config_patterns, base_path=config_base_path, allowed_extensions=ALL_ALLOWED_EXTENSIONS, download_config=download_config, ) except EmptyDatasetError as e: raise EmptyDatasetError( f"Dataset at '{base_path}' doesn't contain data files matching the patterns for config '{config_name}'," f" check `data_files` and `data_fir` parameters in the `configs` YAML field in README.md. " ) from e if config_data_files is None and supports_metadata and config_patterns != DEFAULT_PATTERNS_ALL: try: config_metadata_patterns = get_metadata_patterns(base_path) except FileNotFoundError: config_metadata_patterns = None if config_metadata_patterns is not None: config_metadata_data_files_list = DataFilesList.from_patterns( config_metadata_patterns, base_path=base_path ) if config_metadata_data_files_list: config_data_files_dict = DataFilesDict( { split: data_files_list + config_metadata_data_files_list for split, data_files_list in config_data_files_dict.items() } ) ignored_params = [ param for param in config_params if not hasattr(builder_config_cls, param) and param != "default" ] if ignored_params: logger.warning( f"Some datasets params were ignored: {ignored_params}. " "Make sure to use only valid params for the dataset builder and to have " "a up-to-date version of the `datasets` library." ) builder_configs.append( builder_config_cls( name=config_name, data_files=config_data_files_dict, data_dir=config_data_dir, **{ param: value for param, value in {**default_builder_kwargs, **config_params}.items() if hasattr(builder_config_cls, param) and param not in ("default", "data_files", "data_dir") }, ) ) return builder_configs, default_config_name @dataclass class BuilderConfigsParameters: """Dataclass containing objects related to creation of builder configurations from yaml's metadata content. Attributes: metadata_configs (`MetadataConfigs`, *optional*): Configs parsed from yaml's metadata. builder_configs (`list[BuilderConfig]`, *optional*): List of BuilderConfig objects created from metadata_configs above. default_config_name (`str`): Name of default config taken from yaml's metadata. """ metadata_configs: Optional[MetadataConfigs] = None builder_configs: Optional[List[BuilderConfig]] = None default_config_name: Optional[str] = None @dataclass class DatasetModule: module_path: str hash: str builder_kwargs: dict builder_configs_parameters: BuilderConfigsParameters = field(default_factory=BuilderConfigsParameters) dataset_infos: Optional[DatasetInfosDict] = None @dataclass class MetricModule: module_path: str hash: str class _DatasetModuleFactory: def get_module(self) -> DatasetModule: raise NotImplementedError class _MetricModuleFactory: def get_module(self) -> MetricModule: raise NotImplementedError class GithubMetricModuleFactory(_MetricModuleFactory): """Get the module of a metric. The metric script is downloaded from GitHub. <Deprecated version="2.5.0"> Use the new library 🤗 Evaluate instead: https://huggingface.co/docs/evaluate </Deprecated> """ @deprecated("Use the new library 🤗 Evaluate instead: https://huggingface.co/docs/evaluate") def __init__( self, name: str, revision: Optional[Union[str, Version]] = None, download_config: Optional[DownloadConfig] = None, download_mode: Optional[Union[DownloadMode, str]] = None, dynamic_modules_path: Optional[str] = None, ): self.name = name self.revision = revision self.download_config = download_config.copy() if download_config else DownloadConfig() if self.download_config.max_retries < 3: self.download_config.max_retries = 3 self.download_mode = download_mode self.dynamic_modules_path = dynamic_modules_path assert self.name.count("/") == 0 increase_load_count(name, resource_type="metric") def download_loading_script(self, revision: Optional[str]) -> str: file_path = hf_github_url(path=self.name, name=self.name + ".py", revision=revision, dataset=False) download_config = self.download_config.copy() if download_config.download_desc is None: download_config.download_desc = "Downloading builder script" return cached_path(file_path, download_config=download_config) def get_module(self) -> MetricModule: # get script and other files revision = self.revision try: local_path = self.download_loading_script(revision) revision = self.revision except FileNotFoundError: if revision is not None: raise else: revision = "main" local_path = self.download_loading_script(revision) logger.warning( f"Couldn't find a directory or a metric named '{self.name}' in this version. " f"It was picked from the main branch on github instead." ) imports = get_imports(local_path) local_imports = _download_additional_modules( name=self.name, base_path=hf_github_url(path=self.name, name="", revision=revision, dataset=False), imports=imports, download_config=self.download_config, ) # copy the script and the files in an importable directory dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules() module_path, hash = _create_importable_file( local_path=local_path, local_imports=local_imports, additional_files=[], dynamic_modules_path=dynamic_modules_path, module_namespace="metrics", name=self.name, download_mode=self.download_mode, ) # make the new module to be noticed by the import system importlib.invalidate_caches() return MetricModule(module_path, hash) class LocalMetricModuleFactory(_MetricModuleFactory): """Get the module of a local metric. The metric script is loaded from a local script. <Deprecated version="2.5.0"> Use the new library 🤗 Evaluate instead: https://huggingface.co/docs/evaluate </Deprecated> """ @deprecated("Use the new library 🤗 Evaluate instead: https://huggingface.co/docs/evaluate") def __init__( self, path: str, download_config: Optional[DownloadConfig] = None, download_mode: Optional[Union[DownloadMode, str]] = None, dynamic_modules_path: Optional[str] = None, ): self.path = path self.name = Path(path).stem self.download_config = download_config or DownloadConfig() self.download_mode = download_mode self.dynamic_modules_path = dynamic_modules_path def get_module(self) -> MetricModule: # get script and other files imports = get_imports(self.path) local_imports = _download_additional_modules( name=self.name, base_path=str(Path(self.path).parent), imports=imports, download_config=self.download_config, ) # copy the script and the files in an importable directory dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules() module_path, hash = _create_importable_file( local_path=self.path, local_imports=local_imports, additional_files=[], dynamic_modules_path=dynamic_modules_path, module_namespace="metrics", name=self.name, download_mode=self.download_mode, ) # make the new module to be noticed by the import system importlib.invalidate_caches() return MetricModule(module_path, hash) class LocalDatasetModuleFactoryWithScript(_DatasetModuleFactory): """Get the module of a local dataset. The dataset script is loaded from a local script.""" def __init__( self, path: str, download_config: Optional[DownloadConfig] = None, download_mode: Optional[Union[DownloadMode, str]] = None, dynamic_modules_path: Optional[str] = None, ): self.path = path self.name = Path(path).stem self.download_config = download_config or DownloadConfig() self.download_mode = download_mode self.dynamic_modules_path = dynamic_modules_path def get_module(self) -> DatasetModule: # get script and other files dataset_infos_path = Path(self.path).parent / config.DATASETDICT_INFOS_FILENAME dataset_readme_path = Path(self.path).parent / "README.md" imports = get_imports(self.path) local_imports = _download_additional_modules( name=self.name, base_path=str(Path(self.path).parent), imports=imports, download_config=self.download_config, ) additional_files = [] if dataset_infos_path.is_file(): additional_files.append((config.DATASETDICT_INFOS_FILENAME, str(dataset_infos_path))) if dataset_readme_path.is_file(): additional_files.append(("README.md", dataset_readme_path)) # copy the script and the files in an importable directory dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules() module_path, hash = _create_importable_file( local_path=self.path, local_imports=local_imports, additional_files=additional_files, dynamic_modules_path=dynamic_modules_path, module_namespace="datasets", name=self.name, download_mode=self.download_mode, ) # make the new module to be noticed by the import system importlib.invalidate_caches() builder_kwargs = {"hash": hash, "base_path": str(Path(self.path).parent)} return DatasetModule(module_path, hash, builder_kwargs) class LocalDatasetModuleFactoryWithoutScript(_DatasetModuleFactory): """Get the module of a dataset loaded from the user's data files. The dataset builder module to use is inferred from the data files extensions.""" def __init__( self, path: str, data_dir: Optional[str] = None, data_files: Optional[Union[str, List, Dict]] = None, download_mode: Optional[Union[DownloadMode, str]] = None, ): if data_dir and os.path.isabs(data_dir): raise ValueError(f"`data_dir` must be relative to a dataset directory's root: {path}") self.path = Path(path).as_posix() self.name = Path(path).stem self.data_files = data_files self.data_dir = data_dir self.download_mode = download_mode def get_module(self) -> DatasetModule: readme_path = os.path.join(self.path, "README.md") dataset_card_data = DatasetCard.load(readme_path).data if os.path.isfile(readme_path) else DatasetCardData() metadata_configs = MetadataConfigs.from_dataset_card_data(dataset_card_data) dataset_infos = DatasetInfosDict.from_dataset_card_data(dataset_card_data) # we need a set of data files to find which dataset builder to use # because we need to infer module name by files extensions base_path = Path(self.path, self.data_dir or "").expanduser().resolve().as_posix() if self.data_files is not None: patterns = sanitize_patterns(self.data_files) elif metadata_configs and "data_files" in next(iter(metadata_configs.values())): patterns = sanitize_patterns(next(iter(metadata_configs.values()))["data_files"]) else: patterns = get_data_patterns(base_path) data_files = DataFilesDict.from_patterns( patterns, base_path=base_path, allowed_extensions=ALL_ALLOWED_EXTENSIONS, ) module_name, default_builder_kwargs = infer_module_for_data_files( data_files=data_files, path=self.path, ) data_files = data_files.filter_extensions(_MODULE_TO_EXTENSIONS[module_name]) # Collect metadata files if the module supports them supports_metadata = module_name in _MODULE_SUPPORTS_METADATA if self.data_files is None and supports_metadata and patterns != DEFAULT_PATTERNS_ALL: try: metadata_patterns = get_metadata_patterns(base_path) except FileNotFoundError: metadata_patterns = None if metadata_patterns is not None: metadata_data_files_list = DataFilesList.from_patterns(metadata_patterns, base_path=base_path) if metadata_data_files_list: data_files = DataFilesDict( { split: data_files_list + metadata_data_files_list for split, data_files_list in data_files.items() } ) module_path, hash = _PACKAGED_DATASETS_MODULES[module_name] if metadata_configs: builder_configs, default_config_name = create_builder_configs_from_metadata_configs( module_path, metadata_configs, base_path=base_path, supports_metadata=supports_metadata, default_builder_kwargs=default_builder_kwargs, ) else: builder_configs, default_config_name = None, None builder_kwargs = { "hash": hash, "base_path": self.path, "dataset_name": camelcase_to_snakecase(Path(self.path).name), } if self.data_files is not None or not metadata_configs: builder_kwargs["data_files"] = data_files builder_kwargs.update(default_builder_kwargs) # from _EXTENSION_TO_MODULE # this file is deprecated and was created automatically in old versions of push_to_hub if os.path.isfile(os.path.join(self.path, config.DATASETDICT_INFOS_FILENAME)): with open(os.path.join(self.path, config.DATASETDICT_INFOS_FILENAME), encoding="utf-8") as f: legacy_dataset_infos = DatasetInfosDict( { config_name: DatasetInfo.from_dict(dataset_info_dict) for config_name, dataset_info_dict in json.load(f).items() } ) if len(legacy_dataset_infos) == 1: # old config e.g. named "username--dataset_name" legacy_config_name = next(iter(legacy_dataset_infos)) legacy_dataset_infos["default"] = legacy_dataset_infos.pop(legacy_config_name) legacy_dataset_infos.update(dataset_infos) dataset_infos = legacy_dataset_infos if default_config_name is None and len(dataset_infos) == 1: default_config_name = next(iter(dataset_infos)) return DatasetModule( module_path, hash, builder_kwargs, dataset_infos=dataset_infos, builder_configs_parameters=BuilderConfigsParameters( metadata_configs=metadata_configs, builder_configs=builder_configs, default_config_name=default_config_name, ), ) class PackagedDatasetModuleFactory(_DatasetModuleFactory): """Get the dataset builder module from the ones that are packaged with the library: csv, json, etc.""" def __init__( self, name: str, data_dir: Optional[str] = None, data_files: Optional[Union[str, List, Dict]] = None, download_config: Optional[DownloadConfig] = None, download_mode: Optional[Union[DownloadMode, str]] = None, ): self.name = name self.data_files = data_files self.data_dir = data_dir self.download_config = download_config self.download_mode = download_mode increase_load_count(name, resource_type="dataset") def get_module(self) -> DatasetModule: base_path = Path(self.data_dir or "").expanduser().resolve().as_posix() patterns = sanitize_patterns(self.data_files) if self.data_files is not None else get_data_patterns(base_path) data_files = DataFilesDict.from_patterns( patterns, download_config=self.download_config, base_path=base_path, ) supports_metadata = self.name in _MODULE_SUPPORTS_METADATA if self.data_files is None and supports_metadata and patterns != DEFAULT_PATTERNS_ALL: try: metadata_patterns = get_metadata_patterns(base_path) except FileNotFoundError: metadata_patterns = None if metadata_patterns is not None: metadata_data_files_list = DataFilesList.from_patterns( metadata_patterns, download_config=self.download_config, base_path=base_path ) if metadata_data_files_list: data_files = DataFilesDict( { split: data_files_list + metadata_data_files_list for split, data_files_list in data_files.items() } ) module_path, hash = _PACKAGED_DATASETS_MODULES[self.name] builder_kwargs = { "hash": hash, "data_files": data_files, "dataset_name": self.name, } return DatasetModule(module_path, hash, builder_kwargs) class HubDatasetModuleFactoryWithoutScript(_DatasetModuleFactory): """ Get the module of a dataset loaded from data files of a dataset repository. The dataset builder module to use is inferred from the data files extensions. """ def __init__( self, name: str, revision: Optional[Union[str, Version]] = None, data_dir: Optional[str] = None, data_files: Optional[Union[str, List, Dict]] = None, download_config: Optional[DownloadConfig] = None, download_mode: Optional[Union[DownloadMode, str]] = None, ): self.name = name self.revision = revision self.data_files = data_files self.data_dir = data_dir self.download_config = download_config or DownloadConfig() self.download_mode = download_mode increase_load_count(name, resource_type="dataset") def get_module(self) -> DatasetModule: hfh_dataset_info = HfApi(config.HF_ENDPOINT).dataset_info( self.name, revision=self.revision, token=self.download_config.token, timeout=100.0, ) # even if metadata_configs is not None (which means that we will resolve files for each config later) # we cannot skip resolving all files because we need to infer module name by files extensions revision = hfh_dataset_info.sha # fix the revision in case there are new commits in the meantime base_path = f"hf://datasets/{self.name}@{revision}/{self.data_dir or ''}".rstrip("/") download_config = self.download_config.copy() if download_config.download_desc is None: download_config.download_desc = "Downloading readme" try: dataset_readme_path = cached_path( hf_hub_url(self.name, "README.md", revision=revision), download_config=download_config, ) dataset_card_data = DatasetCard.load(Path(dataset_readme_path)).data except FileNotFoundError: dataset_card_data = DatasetCardData() metadata_configs = MetadataConfigs.from_dataset_card_data(dataset_card_data) dataset_infos = DatasetInfosDict.from_dataset_card_data(dataset_card_data) # we need a set of data files to find which dataset builder to use # because we need to infer module name by files extensions if self.data_files is not None: patterns = sanitize_patterns(self.data_files) elif metadata_configs and "data_files" in next(iter(metadata_configs.values())): patterns = sanitize_patterns(next(iter(metadata_configs.values()))["data_files"]) else: patterns = get_data_patterns(base_path, download_config=self.download_config) data_files = DataFilesDict.from_patterns( patterns, base_path=base_path, allowed_extensions=ALL_ALLOWED_EXTENSIONS, download_config=self.download_config, ) module_name, default_builder_kwargs = infer_module_for_data_files( data_files=data_files, path=self.name, download_config=self.download_config, ) data_files = data_files.filter_extensions(_MODULE_TO_EXTENSIONS[module_name]) # Collect metadata files if the module supports them supports_metadata = module_name in _MODULE_SUPPORTS_METADATA if self.data_files is None and supports_metadata and patterns != DEFAULT_PATTERNS_ALL: try: metadata_patterns = get_metadata_patterns(base_path) except FileNotFoundError: metadata_patterns = None if metadata_patterns is not None: metadata_data_files_list = DataFilesList.from_patterns( metadata_patterns, download_config=self.download_config, base_path=base_path ) if metadata_data_files_list: data_files = DataFilesDict( { split: data_files_list + metadata_data_files_list for split, data_files_list in data_files.items() } ) module_path, hash = _PACKAGED_DATASETS_MODULES[module_name] if metadata_configs: builder_configs, default_config_name = create_builder_configs_from_metadata_configs( module_path, metadata_configs, base_path=base_path, supports_metadata=supports_metadata, default_builder_kwargs=default_builder_kwargs, download_config=self.download_config, ) else: builder_configs, default_config_name = None, None builder_kwargs = { "hash": hash, "base_path": hf_hub_url(self.name, "", revision=self.revision), "repo_id": self.name, "dataset_name": camelcase_to_snakecase(Path(self.name).name), } if self.data_files is not None or not metadata_configs: builder_kwargs["data_files"] = data_files builder_kwargs.update(default_builder_kwargs) # from _EXTENSION_TO_MODULE download_config = self.download_config.copy() if download_config.download_desc is None: download_config.download_desc = "Downloading metadata" try: # this file is deprecated and was created automatically in old versions of push_to_hub dataset_infos_path = cached_path( hf_hub_url(self.name, config.DATASETDICT_INFOS_FILENAME, revision=self.revision), download_config=download_config, ) with open(dataset_infos_path, encoding="utf-8") as f: legacy_dataset_infos = DatasetInfosDict( { config_name: DatasetInfo.from_dict(dataset_info_dict) for config_name, dataset_info_dict in json.load(f).items() } ) if len(legacy_dataset_infos) == 1: # old config e.g. named "username--dataset_name" legacy_config_name = next(iter(legacy_dataset_infos)) legacy_dataset_infos["default"] = legacy_dataset_infos.pop(legacy_config_name) legacy_dataset_infos.update(dataset_infos) dataset_infos = legacy_dataset_infos except FileNotFoundError: pass if default_config_name is None and len(dataset_infos) == 1: default_config_name = next(iter(dataset_infos)) return DatasetModule( module_path, hash, builder_kwargs, dataset_infos=dataset_infos, builder_configs_parameters=BuilderConfigsParameters( metadata_configs=metadata_configs, builder_configs=builder_configs, default_config_name=default_config_name, ), ) class HubDatasetModuleFactoryWithScript(_DatasetModuleFactory): """ Get the module of a dataset from a dataset repository. The dataset script comes from the script inside the dataset repository. """ def __init__( self, name: str, revision: Optional[Union[str, Version]] = None, download_config: Optional[DownloadConfig] = None, download_mode: Optional[Union[DownloadMode, str]] = None, dynamic_modules_path: Optional[str] = None, ): self.name = name self.revision = revision self.download_config = download_config or DownloadConfig() self.download_mode = download_mode self.dynamic_modules_path = dynamic_modules_path increase_load_count(name, resource_type="dataset") def download_loading_script(self) -> str: file_path = hf_hub_url(repo_id=self.name, path=self.name.split("/")[-1] + ".py", revision=self.revision) download_config = self.download_config.copy() if download_config.download_desc is None: download_config.download_desc = "Downloading builder script" return cached_path(file_path, download_config=download_config) def download_dataset_infos_file(self) -> str: dataset_infos = hf_hub_url(repo_id=self.name, path=config.DATASETDICT_INFOS_FILENAME, revision=self.revision) # Download the dataset infos file if available download_config = self.download_config.copy() if download_config.download_desc is None: download_config.download_desc = "Downloading metadata" try: return cached_path( dataset_infos, download_config=download_config, ) except (FileNotFoundError, ConnectionError): return None def download_dataset_readme_file(self) -> str: readme_url = hf_hub_url(repo_id=self.name, path="README.md", revision=self.revision) # Download the dataset infos file if available download_config = self.download_config.copy() if download_config.download_desc is None: download_config.download_desc = "Downloading readme" try: return cached_path( readme_url, download_config=download_config, ) except (FileNotFoundError, ConnectionError): return None def get_module(self) -> DatasetModule: # get script and other files local_path = self.download_loading_script() dataset_infos_path = self.download_dataset_infos_file() dataset_readme_path = self.download_dataset_readme_file() imports = get_imports(local_path) local_imports = _download_additional_modules( name=self.name, base_path=hf_hub_url(repo_id=self.name, path="", revision=self.revision), imports=imports, download_config=self.download_config, ) additional_files = [] if dataset_infos_path: additional_files.append((config.DATASETDICT_INFOS_FILENAME, dataset_infos_path)) if dataset_readme_path: additional_files.append(("README.md", dataset_readme_path)) # copy the script and the files in an importable directory dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules() module_path, hash = _create_importable_file( local_path=local_path, local_imports=local_imports, additional_files=additional_files, dynamic_modules_path=dynamic_modules_path, module_namespace="datasets", name=self.name, download_mode=self.download_mode, ) # make the new module to be noticed by the import system importlib.invalidate_caches() builder_kwargs = { "hash": hash, "base_path": hf_hub_url(self.name, "", revision=self.revision), "repo_id": self.name, } return DatasetModule(module_path, hash, builder_kwargs) class CachedDatasetModuleFactory(_DatasetModuleFactory): """ Get the module of a dataset that has been loaded once already and cached. The script that is loaded from the cache is the most recent one with a matching name. """ def __init__( self, name: str, dynamic_modules_path: Optional[str] = None, ): self.name = name self.dynamic_modules_path = dynamic_modules_path assert self.name.count("/") <= 1 def get_module(self) -> DatasetModule: dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules() importable_directory_path = os.path.join(dynamic_modules_path, "datasets", self.name.replace("/", "--")) hashes = ( [h for h in os.listdir(importable_directory_path) if len(h) == 64] if os.path.isdir(importable_directory_path) else None ) if not hashes: raise FileNotFoundError(f"Dataset {self.name} is not cached in {dynamic_modules_path}") # get most recent def _get_modification_time(module_hash): return (Path(importable_directory_path) / module_hash / (self.name.split("/")[-1] + ".py")).stat().st_mtime hash = sorted(hashes, key=_get_modification_time)[-1] warning_msg = ( f"Using the latest cached version of the module from {os.path.join(importable_directory_path, hash)} " f"(last modified on {time.ctime(_get_modification_time(hash))}) since it " f"couldn't be found locally at {self.name}." ) if not config.HF_DATASETS_OFFLINE: warning_msg += ", or remotely on the Hugging Face Hub." logger.warning(warning_msg) # make the new module to be noticed by the import system module_path = ".".join( [ os.path.basename(dynamic_modules_path), "datasets", self.name.replace("/", "--"), hash, self.name.split("/")[-1], ] ) importlib.invalidate_caches() builder_kwargs = { "hash": hash, "repo_id": self.name, } return DatasetModule(module_path, hash, builder_kwargs) class CachedMetricModuleFactory(_MetricModuleFactory): """ Get the module of a metric that has been loaded once already and cached. The script that is loaded from the cache is the most recent one with a matching name. <Deprecated version="2.5.0"> Use the new library 🤗 Evaluate instead: https://huggingface.co/docs/evaluate </Deprecated> """ @deprecated("Use the new library 🤗 Evaluate instead: https://huggingface.co/docs/evaluate") def __init__( self, name: str, dynamic_modules_path: Optional[str] = None, ): self.name = name self.dynamic_modules_path = dynamic_modules_path assert self.name.count("/") == 0 def get_module(self) -> MetricModule: dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules() importable_directory_path = os.path.join(dynamic_modules_path, "metrics", self.name) hashes = ( [h for h in os.listdir(importable_directory_path) if len(h) == 64] if os.path.isdir(importable_directory_path) else None ) if not hashes: raise FileNotFoundError(f"Metric {self.name} is not cached in {dynamic_modules_path}") # get most recent def _get_modification_time(module_hash): return (Path(importable_directory_path) / module_hash / (self.name + ".py")).stat().st_mtime hash = sorted(hashes, key=_get_modification_time)[-1] logger.warning( f"Using the latest cached version of the module from {os.path.join(importable_directory_path, hash)} " f"(last modified on {time.ctime(_get_modification_time(hash))}) since it " f"couldn't be found locally at {self.name}, or remotely on the Hugging Face Hub." ) # make the new module to be noticed by the import system module_path = ".".join([os.path.basename(dynamic_modules_path), "metrics", self.name, hash, self.name]) importlib.invalidate_caches() return MetricModule(module_path, hash) def dataset_module_factory( path: str, revision: Optional[Union[str, Version]] = None, download_config: Optional[DownloadConfig] = None, download_mode: Optional[Union[DownloadMode, str]] = None, dynamic_modules_path: Optional[str] = None, data_dir: Optional[str] = None, data_files: Optional[Union[Dict, List, str, DataFilesDict]] = None, **download_kwargs, ) -> DatasetModule: """ Download/extract/cache a dataset module. Dataset codes are cached inside the dynamic modules cache to allow easy import (avoid ugly sys.path tweaks). Args: path (str): Path or name of the dataset. Depending on ``path``, the dataset builder that is used comes from a generic dataset script (JSON, CSV, Parquet, text etc.) or from the dataset script (a python file) inside the dataset directory. For local datasets: - if ``path`` is a local directory (containing data files only) -> load a generic dataset builder (csv, json, text etc.) based on the content of the directory e.g. ``'./path/to/directory/with/my/csv/data'``. - if ``path`` is a local dataset script or a directory containing a local dataset script (if the script has the same name as the directory): -> load the dataset builder from the dataset script e.g. ``'./dataset/squad'`` or ``'./dataset/squad/squad.py'``. For datasets on the Hugging Face Hub (list all available datasets with ``huggingface_hub.list_datasets()``) - if ``path`` is a dataset repository on the HF hub (containing data files only) -> load a generic dataset builder (csv, text etc.) based on the content of the repository e.g. ``'username/dataset_name'``, a dataset repository on the HF hub containing your data files. - if ``path`` is a dataset repository on the HF hub with a dataset script (if the script has the same name as the directory) -> load the dataset builder from the dataset script in the dataset repository e.g. ``glue``, ``squad``, ``'username/dataset_name'``, a dataset repository on the HF hub containing a dataset script `'dataset_name.py'`. revision (:class:`~utils.Version` or :obj:`str`, optional): Version of the dataset script to load. As datasets have their own git repository on the Datasets Hub, the default version "main" corresponds to their "main" branch. You can specify a different version than the default "main" by using a commit SHA or a git tag of the dataset repository. download_config (:class:`DownloadConfig`, optional): Specific download configuration parameters. download_mode (:class:`DownloadMode` or :obj:`str`, default ``REUSE_DATASET_IF_EXISTS``): Download/generate mode. dynamic_modules_path (Optional str, defaults to HF_MODULES_CACHE / "datasets_modules", i.e. ~/.cache/huggingface/modules/datasets_modules): Optional path to the directory in which the dynamic modules are saved. It must have been initialized with :obj:`init_dynamic_modules`. By default, the datasets and metrics are stored inside the `datasets_modules` module. data_dir (:obj:`str`, optional): Directory with the data files. Used only if `data_files` is not specified, in which case it's equal to pass `os.path.join(data_dir, "**")` as `data_files`. data_files (:obj:`Union[Dict, List, str]`, optional): Defining the data_files of the dataset configuration. **download_kwargs (additional keyword arguments): optional attributes for DownloadConfig() which will override the attributes in download_config if supplied. Returns: DatasetModule """ if download_config is None: download_config = DownloadConfig(**download_kwargs) download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS) download_config.extract_compressed_file = True download_config.force_extract = True download_config.force_download = download_mode == DownloadMode.FORCE_REDOWNLOAD filename = list(filter(lambda x: x, path.replace(os.sep, "/").split("/")))[-1] if not filename.endswith(".py"): filename = filename + ".py" combined_path = os.path.join(path, filename) # We have several ways to get a dataset builder: # # - if path is the name of a packaged dataset module # -> use the packaged module (json, csv, etc.) # # - if os.path.join(path, name) is a local python file # -> use the module from the python file # - if path is a local directory (but no python file) # -> use a packaged module (csv, text etc.) based on content of the directory # # - if path has one "/" and is dataset repository on the HF hub with a python file # -> the module from the python file in the dataset repository # - if path has one "/" and is dataset repository on the HF hub without a python file # -> use a packaged module (csv, text etc.) based on content of the repository # Try packaged if path in _PACKAGED_DATASETS_MODULES: return PackagedDatasetModuleFactory( path, data_dir=data_dir, data_files=data_files, download_config=download_config, download_mode=download_mode, ).get_module() # Try locally elif path.endswith(filename): if os.path.isfile(path): return LocalDatasetModuleFactoryWithScript( path, download_mode=download_mode, dynamic_modules_path=dynamic_modules_path ).get_module() else: raise FileNotFoundError(f"Couldn't find a dataset script at {relative_to_absolute_path(path)}") elif os.path.isfile(combined_path): return LocalDatasetModuleFactoryWithScript( combined_path, download_mode=download_mode, dynamic_modules_path=dynamic_modules_path ).get_module() elif os.path.isdir(path): return LocalDatasetModuleFactoryWithoutScript( path, data_dir=data_dir, data_files=data_files, download_mode=download_mode ).get_module() # Try remotely elif is_relative_path(path) and path.count("/") <= 1: try: _raise_if_offline_mode_is_enabled() hf_api = HfApi(config.HF_ENDPOINT) try: dataset_info = hf_api.dataset_info( repo_id=path, revision=revision, token=download_config.token, timeout=100.0, ) except Exception as e: # noqa catch any exception of hf_hub and consider that the dataset doesn't exist if isinstance( e, ( OfflineModeIsEnabled, requests.exceptions.ConnectTimeout, requests.exceptions.ConnectionError, ), ): raise ConnectionError(f"Couldn't reach '{path}' on the Hub ({type(e).__name__})") elif "404" in str(e): msg = f"Dataset '{path}' doesn't exist on the Hub" raise FileNotFoundError(msg + f" at revision '{revision}'" if revision else msg) elif "401" in str(e): msg = f"Dataset '{path}' doesn't exist on the Hub" msg = msg + f" at revision '{revision}'" if revision else msg raise FileNotFoundError( msg + ". If the repo is private or gated, make sure to log in with `huggingface-cli login`." ) else: raise e if filename in [sibling.rfilename for sibling in dataset_info.siblings]: return HubDatasetModuleFactoryWithScript( path, revision=revision, download_config=download_config, download_mode=download_mode, dynamic_modules_path=dynamic_modules_path, ).get_module() else: return HubDatasetModuleFactoryWithoutScript( path, revision=revision, data_dir=data_dir, data_files=data_files, download_config=download_config, download_mode=download_mode, ).get_module() except ( Exception ) as e1: # noqa all the attempts failed, before raising the error we should check if the module is already cached. try: return CachedDatasetModuleFactory(path, dynamic_modules_path=dynamic_modules_path).get_module() except Exception: # noqa if it's not in the cache, then it doesn't exist. if isinstance(e1, OfflineModeIsEnabled): raise ConnectionError(f"Couldn't reach the Hugging Face Hub for dataset '{path}': {e1}") from None if isinstance(e1, EmptyDatasetError): raise e1 from None if isinstance(e1, FileNotFoundError): raise FileNotFoundError( f"Couldn't find a dataset script at {relative_to_absolute_path(combined_path)} or any data file in the same directory. " f"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}" ) from None raise e1 from None else: raise FileNotFoundError( f"Couldn't find a dataset script at {relative_to_absolute_path(combined_path)} or any data file in the same directory." ) @deprecated("Use the new library 🤗 Evaluate instead: https://huggingface.co/docs/evaluate") def metric_module_factory( path: str, revision: Optional[Union[str, Version]] = None, download_config: Optional[DownloadConfig] = None, download_mode: Optional[Union[DownloadMode, str]] = None, dynamic_modules_path: Optional[str] = None, **download_kwargs, ) -> MetricModule: """ Download/extract/cache a metric module. <Deprecated version="2.5.0"> Use the new library 🤗 Evaluate instead: https://huggingface.co/docs/evaluate </Deprecated> Metrics codes are cached inside the dynamic modules cache to allow easy import (avoid ugly sys.path tweaks). Args: path (str): Path or name of the metric script. - if ``path`` is a local metric script or a directory containing a local metric script (if the script has the same name as the directory): -> load the module from the metric script e.g. ``'./metrics/accuracy'`` or ``'./metrics/accuracy/accuracy.py'``. - if ``path`` is a metric on the Hugging Face Hub (ex: `glue`, `squad`) -> load the module from the metric script in the GitHub repository at huggingface/datasets e.g. ``'accuracy'`` or ``'rouge'``. revision (Optional ``Union[str, datasets.Version]``): If specified, the module will be loaded from the datasets repository at this version. By default: - it is set to the local version of the lib. - it will also try to load it from the main branch if it's not available at the local version of the lib. Specifying a version that is different from your local version of the lib might cause compatibility issues. download_config (:class:`DownloadConfig`, optional): Specific download configuration parameters. download_mode (:class:`DownloadMode` or :obj:`str`, default ``REUSE_DATASET_IF_EXISTS``): Download/generate mode. dynamic_modules_path (Optional str, defaults to HF_MODULES_CACHE / "datasets_modules", i.e. ~/.cache/huggingface/modules/datasets_modules): Optional path to the directory in which the dynamic modules are saved. It must have been initialized with :obj:`init_dynamic_modules`. By default, the datasets and metrics are stored inside the `datasets_modules` module. **download_kwargs (additional keyword arguments): optional attributes for DownloadConfig() which will override the attributes in download_config if supplied. Returns: MetricModule """ with warnings.catch_warnings(): # Ignore equivalent warnings to the one already issued warnings.filterwarnings("ignore", message=".*https://huggingface.co/docs/evaluate$", category=FutureWarning) if download_config is None: download_config = DownloadConfig(**download_kwargs) download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS) download_config.extract_compressed_file = True download_config.force_extract = True filename = list(filter(lambda x: x, path.replace(os.sep, "/").split("/")))[-1] if not filename.endswith(".py"): filename = filename + ".py" combined_path = os.path.join(path, filename) # Try locally if path.endswith(filename): if os.path.isfile(path): return LocalMetricModuleFactory( path, download_mode=download_mode, dynamic_modules_path=dynamic_modules_path ).get_module() else: raise FileNotFoundError(f"Couldn't find a metric script at {relative_to_absolute_path(path)}") elif os.path.isfile(combined_path): return LocalMetricModuleFactory( combined_path, download_mode=download_mode, dynamic_modules_path=dynamic_modules_path ).get_module() elif is_relative_path(path) and path.count("/") == 0: try: return GithubMetricModuleFactory( path, revision=revision, download_config=download_config, download_mode=download_mode, dynamic_modules_path=dynamic_modules_path, ).get_module() except ( Exception ) as e1: # noqa all the attempts failed, before raising the error we should check if the module is already cached. try: return CachedMetricModuleFactory(path, dynamic_modules_path=dynamic_modules_path).get_module() except Exception: # noqa if it's not in the cache, then it doesn't exist. if not isinstance(e1, FileNotFoundError): raise e1 from None raise FileNotFoundError( f"Couldn't find a metric script at {relative_to_absolute_path(combined_path)}. " f"Metric '{path}' doesn't exist on the Hugging Face Hub either." ) from None else: raise FileNotFoundError(f"Couldn't find a metric script at {relative_to_absolute_path(combined_path)}.") @deprecated("Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate") def load_metric( path: str, config_name: Optional[str] = None, process_id: int = 0, num_process: int = 1, cache_dir: Optional[str] = None, experiment_id: Optional[str] = None, keep_in_memory: bool = False, download_config: Optional[DownloadConfig] = None, download_mode: Optional[Union[DownloadMode, str]] = None, revision: Optional[Union[str, Version]] = None, **metric_init_kwargs, ) -> Metric: """Load a `datasets.Metric`. <Deprecated version="2.5.0"> Use `evaluate.load` instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate </Deprecated> Args: path (``str``): path to the metric processing script with the metric builder. Can be either: - a local path to processing script or the directory containing the script (if the script has the same name as the directory), e.g. ``'./metrics/rouge'`` or ``'./metrics/rogue/rouge.py'`` - a metric identifier on the HuggingFace datasets repo (list all available metrics with ``datasets.list_metrics()``) e.g. ``'rouge'`` or ``'bleu'`` config_name (:obj:`str`, optional): selecting a configuration for the metric (e.g. the GLUE metric has a configuration for each subset) process_id (:obj:`int`, optional): for distributed evaluation: id of the process num_process (:obj:`int`, optional): for distributed evaluation: total number of processes cache_dir (Optional str): path to store the temporary predictions and references (default to `~/.cache/huggingface/metrics/`) experiment_id (``str``): A specific experiment id. This is used if several distributed evaluations share the same file system. This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1). keep_in_memory (bool): Whether to store the temporary results in memory (defaults to False) download_config (Optional ``datasets.DownloadConfig``: specific download configuration parameters. download_mode (:class:`DownloadMode` or :obj:`str`, default ``REUSE_DATASET_IF_EXISTS``): Download/generate mode. revision (Optional ``Union[str, datasets.Version]``): if specified, the module will be loaded from the datasets repository at this version. By default, it is set to the local version of the lib. Specifying a version that is different from your local version of the lib might cause compatibility issues. Returns: `datasets.Metric` Example: ```py >>> from datasets import load_metric >>> accuracy = load_metric('accuracy') >>> accuracy.compute(references=[1, 0], predictions=[1, 1]) {'accuracy': 0.5} ``` """ with warnings.catch_warnings(): # Ignore equivalent warnings to the one already issued warnings.filterwarnings("ignore", message=".*https://huggingface.co/docs/evaluate$", category=FutureWarning) download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS) metric_module = metric_module_factory( path, revision=revision, download_config=download_config, download_mode=download_mode ).module_path metric_cls = import_main_class(metric_module, dataset=False) metric = metric_cls( config_name=config_name, process_id=process_id, num_process=num_process, cache_dir=cache_dir, keep_in_memory=keep_in_memory, experiment_id=experiment_id, **metric_init_kwargs, ) # Download and prepare resources for the metric metric.download_and_prepare(download_config=download_config) return metric def load_dataset_builder( path: str, name: Optional[str] = None, data_dir: Optional[str] = None, data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]] = None, cache_dir: Optional[str] = None, features: Optional[Features] = None, download_config: Optional[DownloadConfig] = None, download_mode: Optional[Union[DownloadMode, str]] = None, revision: Optional[Union[str, Version]] = None, token: Optional[Union[bool, str]] = None, use_auth_token="deprecated", storage_options: Optional[Dict] = None, **config_kwargs, ) -> DatasetBuilder: """Load a dataset builder from the Hugging Face Hub, or a local dataset. A dataset builder can be used to inspect general information that is required to build a dataset (cache directory, config, dataset info, etc.) without downloading the dataset itself. You can find the list of datasets on the [Hub](https://huggingface.co/datasets) or with [`huggingface_hub.list_datasets`]. A dataset is a directory that contains: - some data files in generic formats (JSON, CSV, Parquet, text, etc.) - and optionally a dataset script, if it requires some code to read the data files. This is used to load any kind of formats or structures. Note that dataset scripts can also download and read data files from anywhere - in case your data files already exist online. Args: path (`str`): Path or name of the dataset. Depending on `path`, the dataset builder that is used comes from a generic dataset script (JSON, CSV, Parquet, text etc.) or from the dataset script (a python file) inside the dataset directory. For local datasets: - if `path` is a local directory (containing data files only) -> load a generic dataset builder (csv, json, text etc.) based on the content of the directory e.g. `'./path/to/directory/with/my/csv/data'`. - if `path` is a local dataset script or a directory containing a local dataset script (if the script has the same name as the directory) -> load the dataset builder from the dataset script e.g. `'./dataset/squad'` or `'./dataset/squad/squad.py'`. For datasets on the Hugging Face Hub (list all available datasets with [`huggingface_hub.list_datasets`]) - if `path` is a dataset repository on the HF hub (containing data files only) -> load a generic dataset builder (csv, text etc.) based on the content of the repository e.g. `'username/dataset_name'`, a dataset repository on the HF hub containing your data files. - if `path` is a dataset repository on the HF hub with a dataset script (if the script has the same name as the directory) -> load the dataset builder from the dataset script in the dataset repository e.g. `glue`, `squad`, `'username/dataset_name'`, a dataset repository on the HF hub containing a dataset script `'dataset_name.py'`. name (`str`, *optional*): Defining the name of the dataset configuration. data_dir (`str`, *optional*): Defining the `data_dir` of the dataset configuration. If specified for the generic builders (csv, text etc.) or the Hub datasets and `data_files` is `None`, the behavior is equal to passing `os.path.join(data_dir, **)` as `data_files` to reference all the files in a directory. data_files (`str` or `Sequence` or `Mapping`, *optional*): Path(s) to source data file(s). cache_dir (`str`, *optional*): Directory to read/write data. Defaults to `"~/.cache/huggingface/datasets"`. features ([`Features`], *optional*): Set the features type to use for this dataset. download_config ([`DownloadConfig`], *optional*): Specific download configuration parameters. download_mode ([`DownloadMode`] or `str`, defaults to `REUSE_DATASET_IF_EXISTS`): Download/generate mode. revision ([`Version`] or `str`, *optional*): Version of the dataset script to load. As datasets have their own git repository on the Datasets Hub, the default version "main" corresponds to their "main" branch. You can specify a different version than the default "main" by using a commit SHA or a git tag of the dataset repository. token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `"~/.huggingface"`. use_auth_token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `"~/.huggingface"`. <Deprecated version="2.14.0"> `use_auth_token` was deprecated in favor of `token` in version 2.14.0 and will be removed in 3.0.0. </Deprecated> storage_options (`dict`, *optional*, defaults to `None`): **Experimental**. Key/value pairs to be passed on to the dataset file-system backend, if any. <Added version="2.11.0"/> **config_kwargs (additional keyword arguments): Keyword arguments to be passed to the [`BuilderConfig`] and used in the [`DatasetBuilder`]. Returns: [`DatasetBuilder`] Example: ```py >>> from datasets import load_dataset_builder >>> ds_builder = load_dataset_builder('rotten_tomatoes') >>> ds_builder.info.features {'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None), 'text': Value(dtype='string', id=None)} ``` """ if use_auth_token != "deprecated": warnings.warn( "'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n" f"You can remove this warning by passing 'token={use_auth_token}' instead.", FutureWarning, ) token = use_auth_token download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS) if token is not None: download_config = download_config.copy() if download_config else DownloadConfig() download_config.token = token if storage_options is not None: download_config = download_config.copy() if download_config else DownloadConfig() download_config.storage_options.update(storage_options) dataset_module = dataset_module_factory( path, revision=revision, download_config=download_config, download_mode=download_mode, data_dir=data_dir, data_files=data_files, ) # Get dataset builder class from the processing script builder_kwargs = dataset_module.builder_kwargs data_dir = builder_kwargs.pop("data_dir", data_dir) data_files = builder_kwargs.pop("data_files", data_files) config_name = builder_kwargs.pop( "config_name", name or dataset_module.builder_configs_parameters.default_config_name ) dataset_name = builder_kwargs.pop("dataset_name", None) hash = builder_kwargs.pop("hash") info = dataset_module.dataset_infos.get(config_name) if dataset_module.dataset_infos else None if ( dataset_module.builder_configs_parameters.metadata_configs and config_name in dataset_module.builder_configs_parameters.metadata_configs ): hash = update_hash_with_config_parameters( hash, dataset_module.builder_configs_parameters.metadata_configs[config_name] ) if path in _PACKAGED_DATASETS_MODULES and data_files is None: error_msg = f"Please specify the data files or data directory to load for the {path} dataset builder." example_extensions = [ extension for extension in _EXTENSION_TO_MODULE if _EXTENSION_TO_MODULE[extension] == path ] if example_extensions: error_msg += f'\nFor example `data_files={{"train": "path/to/data/train/*.{example_extensions[0]}"}}`' raise ValueError(error_msg) builder_cls = get_dataset_builder_class(dataset_module, dataset_name=dataset_name) # Instantiate the dataset builder builder_instance: DatasetBuilder = builder_cls( cache_dir=cache_dir, dataset_name=dataset_name, config_name=config_name, data_dir=data_dir, data_files=data_files, hash=hash, info=info, features=features, token=token, storage_options=storage_options, **builder_kwargs, **config_kwargs, ) return builder_instance def load_dataset( path: str, name: Optional[str] = None, data_dir: Optional[str] = None, data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]] = None, split: Optional[Union[str, Split]] = None, cache_dir: Optional[str] = None, features: Optional[Features] = None, download_config: Optional[DownloadConfig] = None, download_mode: Optional[Union[DownloadMode, str]] = None, verification_mode: Optional[Union[VerificationMode, str]] = None, ignore_verifications="deprecated", keep_in_memory: Optional[bool] = None, save_infos: bool = False, revision: Optional[Union[str, Version]] = None, token: Optional[Union[bool, str]] = None, use_auth_token="deprecated", task="deprecated", streaming: bool = False, num_proc: Optional[int] = None, storage_options: Optional[Dict] = None, **config_kwargs, ) -> Union[DatasetDict, Dataset, IterableDatasetDict, IterableDataset]: """Load a dataset from the Hugging Face Hub, or a local dataset. You can find the list of datasets on the [Hub](https://huggingface.co/datasets) or with [`huggingface_hub.list_datasets`]. A dataset is a directory that contains: - some data files in generic formats (JSON, CSV, Parquet, text, etc.). - and optionally a dataset script, if it requires some code to read the data files. This is used to load any kind of formats or structures. Note that dataset scripts can also download and read data files from anywhere - in case your data files already exist online. This function does the following under the hood: 1. Download and import in the library the dataset script from `path` if it's not already cached inside the library. If the dataset has no dataset script, then a generic dataset script is imported instead (JSON, CSV, Parquet, text, etc.) Dataset scripts are small python scripts that define dataset builders. They define the citation, info and format of the dataset, contain the path or URL to the original data files and the code to load examples from the original data files. You can find the complete list of datasets in the Datasets [Hub](https://huggingface.co/datasets). 2. Run the dataset script which will: * Download the dataset file from the original URL (see the script) if it's not already available locally or cached. * Process and cache the dataset in typed Arrow tables for caching. Arrow table are arbitrarily long, typed tables which can store nested objects and be mapped to numpy/pandas/python generic types. They can be directly accessed from disk, loaded in RAM or even streamed over the web. 3. Return a dataset built from the requested splits in `split` (default: all). It also allows to load a dataset from a local directory or a dataset repository on the Hugging Face Hub without dataset script. In this case, it automatically loads all the data files from the directory or the dataset repository. Args: path (`str`): Path or name of the dataset. Depending on `path`, the dataset builder that is used comes from a generic dataset script (JSON, CSV, Parquet, text etc.) or from the dataset script (a python file) inside the dataset directory. For local datasets: - if `path` is a local directory (containing data files only) -> load a generic dataset builder (csv, json, text etc.) based on the content of the directory e.g. `'./path/to/directory/with/my/csv/data'`. - if `path` is a local dataset script or a directory containing a local dataset script (if the script has the same name as the directory) -> load the dataset builder from the dataset script e.g. `'./dataset/squad'` or `'./dataset/squad/squad.py'`. For datasets on the Hugging Face Hub (list all available datasets with [`huggingface_hub.list_datasets`]) - if `path` is a dataset repository on the HF hub (containing data files only) -> load a generic dataset builder (csv, text etc.) based on the content of the repository e.g. `'username/dataset_name'`, a dataset repository on the HF hub containing your data files. - if `path` is a dataset repository on the HF hub with a dataset script (if the script has the same name as the directory) -> load the dataset builder from the dataset script in the dataset repository e.g. `glue`, `squad`, `'username/dataset_name'`, a dataset repository on the HF hub containing a dataset script `'dataset_name.py'`. name (`str`, *optional*): Defining the name of the dataset configuration. data_dir (`str`, *optional*): Defining the `data_dir` of the dataset configuration. If specified for the generic builders (csv, text etc.) or the Hub datasets and `data_files` is `None`, the behavior is equal to passing `os.path.join(data_dir, **)` as `data_files` to reference all the files in a directory. data_files (`str` or `Sequence` or `Mapping`, *optional*): Path(s) to source data file(s). split (`Split` or `str`): Which split of the data to load. If `None`, will return a `dict` with all splits (typically `datasets.Split.TRAIN` and `datasets.Split.TEST`). If given, will return a single Dataset. Splits can be combined and specified like in tensorflow-datasets. cache_dir (`str`, *optional*): Directory to read/write data. Defaults to `"~/.cache/huggingface/datasets"`. features (`Features`, *optional*): Set the features type to use for this dataset. download_config ([`DownloadConfig`], *optional*): Specific download configuration parameters. download_mode ([`DownloadMode`] or `str`, defaults to `REUSE_DATASET_IF_EXISTS`): Download/generate mode. verification_mode ([`VerificationMode`] or `str`, defaults to `BASIC_CHECKS`): Verification mode determining the checks to run on the downloaded/processed dataset information (checksums/size/splits/...). <Added version="2.9.1"/> ignore_verifications (`bool`, defaults to `False`): Ignore the verifications of the downloaded/processed dataset information (checksums/size/splits/...). <Deprecated version="2.9.1"> `ignore_verifications` was deprecated in version 2.9.1 and will be removed in 3.0.0. Please use `verification_mode` instead. </Deprecated> keep_in_memory (`bool`, defaults to `None`): Whether to copy the dataset in-memory. If `None`, the dataset will not be copied in-memory unless explicitly enabled by setting `datasets.config.IN_MEMORY_MAX_SIZE` to nonzero. See more details in the [improve performance](../cache#improve-performance) section. save_infos (`bool`, defaults to `False`): Save the dataset information (checksums/size/splits/...). revision ([`Version`] or `str`, *optional*): Version of the dataset script to load. As datasets have their own git repository on the Datasets Hub, the default version "main" corresponds to their "main" branch. You can specify a different version than the default "main" by using a commit SHA or a git tag of the dataset repository. token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `"~/.huggingface"`. use_auth_token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `"~/.huggingface"`. <Deprecated version="2.14.0"> `use_auth_token` was deprecated in favor of `token` in version 2.14.0 and will be removed in 3.0.0. </Deprecated> task (`str`): The task to prepare the dataset for during training and evaluation. Casts the dataset's [`Features`] to standardized column names and types as detailed in `datasets.tasks`. <Deprecated version="2.13.0"> `task` was deprecated in version 2.13.0 and will be removed in 3.0.0. </Deprecated> streaming (`bool`, defaults to `False`): If set to `True`, don't download the data files. Instead, it streams the data progressively while iterating on the dataset. An [`IterableDataset`] or [`IterableDatasetDict`] is returned instead in this case. Note that streaming works for datasets that use data formats that support being iterated over like txt, csv, jsonl for example. Json files may be downloaded completely. Also streaming from remote zip or gzip files is supported but other compressed formats like rar and xz are not yet supported. The tgz format doesn't allow streaming. num_proc (`int`, *optional*, defaults to `None`): Number of processes when downloading and generating the dataset locally. Multiprocessing is disabled by default. <Added version="2.7.0"/> storage_options (`dict`, *optional*, defaults to `None`): **Experimental**. Key/value pairs to be passed on to the dataset file-system backend, if any. <Added version="2.11.0"/> **config_kwargs (additional keyword arguments): Keyword arguments to be passed to the `BuilderConfig` and used in the [`DatasetBuilder`]. Returns: [`Dataset`] or [`DatasetDict`]: - if `split` is not `None`: the dataset requested, - if `split` is `None`, a [`~datasets.DatasetDict`] with each split. or [`IterableDataset`] or [`IterableDatasetDict`]: if `streaming=True` - if `split` is not `None`, the dataset is requested - if `split` is `None`, a [`~datasets.streaming.IterableDatasetDict`] with each split. Example: Load a dataset from the Hugging Face Hub: ```py >>> from datasets import load_dataset >>> ds = load_dataset('rotten_tomatoes', split='train') # Map data files to splits >>> data_files = {'train': 'train.csv', 'test': 'test.csv'} >>> ds = load_dataset('namespace/your_dataset_name', data_files=data_files) ``` Load a local dataset: ```py # Load a CSV file >>> from datasets import load_dataset >>> ds = load_dataset('csv', data_files='path/to/local/my_dataset.csv') # Load a JSON file >>> from datasets import load_dataset >>> ds = load_dataset('json', data_files='path/to/local/my_dataset.json') # Load from a local loading script >>> from datasets import load_dataset >>> ds = load_dataset('path/to/local/loading_script/loading_script.py', split='train') ``` Load an [`~datasets.IterableDataset`]: ```py >>> from datasets import load_dataset >>> ds = load_dataset('rotten_tomatoes', split='train', streaming=True) ``` Load an image dataset with the `ImageFolder` dataset builder: ```py >>> from datasets import load_dataset >>> ds = load_dataset('imagefolder', data_dir='/path/to/images', split='train') ``` """ if use_auth_token != "deprecated": warnings.warn( "'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n" f"You can remove this warning by passing 'token={use_auth_token}' instead.", FutureWarning, ) token = use_auth_token if ignore_verifications != "deprecated": verification_mode = VerificationMode.NO_CHECKS if ignore_verifications else VerificationMode.ALL_CHECKS warnings.warn( "'ignore_verifications' was deprecated in favor of 'verification_mode' in version 2.9.1 and will be removed in 3.0.0.\n" f"You can remove this warning by passing 'verification_mode={verification_mode.value}' instead.", FutureWarning, ) if task != "deprecated": warnings.warn( "'task' was deprecated in version 2.13.0 and will be removed in 3.0.0.\n", FutureWarning, ) else: task = None if data_files is not None and not data_files: raise ValueError(f"Empty 'data_files': '{data_files}'. It should be either non-empty or None (default).") if Path(path, config.DATASET_STATE_JSON_FILENAME).exists(): raise ValueError( "You are trying to load a dataset that was saved using `save_to_disk`. " "Please use `load_from_disk` instead." ) if streaming and num_proc is not None: raise NotImplementedError( "Loading a streaming dataset in parallel with `num_proc` is not implemented. " "To parallelize streaming, you can wrap the dataset with a PyTorch DataLoader using `num_workers` > 1 instead." ) download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS) verification_mode = VerificationMode( (verification_mode or VerificationMode.BASIC_CHECKS) if not save_infos else VerificationMode.ALL_CHECKS ) # Create a dataset builder builder_instance = load_dataset_builder( path=path, name=name, data_dir=data_dir, data_files=data_files, cache_dir=cache_dir, features=features, download_config=download_config, download_mode=download_mode, revision=revision, token=token, storage_options=storage_options, **config_kwargs, ) # Return iterable dataset in case of streaming if streaming: return builder_instance.as_streaming_dataset(split=split) # Some datasets are already processed on the HF google storage # Don't try downloading from Google storage for the packaged datasets as text, json, csv or pandas try_from_hf_gcs = path not in _PACKAGED_DATASETS_MODULES # Download and prepare data builder_instance.download_and_prepare( download_config=download_config, download_mode=download_mode, verification_mode=verification_mode, try_from_hf_gcs=try_from_hf_gcs, num_proc=num_proc, storage_options=storage_options, ) # Build dataset for splits keep_in_memory = ( keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size) ) ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory) # Rename and cast features to match task schema if task is not None: # To avoid issuing the same warning twice with warnings.catch_warnings(): warnings.simplefilter("ignore", FutureWarning) ds = ds.prepare_for_task(task) if save_infos: builder_instance._save_infos() return ds def load_from_disk( dataset_path: str, fs="deprecated", keep_in_memory: Optional[bool] = None, storage_options: Optional[dict] = None ) -> Union[Dataset, DatasetDict]: """ Loads a dataset that was previously saved using [`~Dataset.save_to_disk`] from a dataset directory, or from a filesystem using any implementation of `fsspec.spec.AbstractFileSystem`. Args: dataset_path (`str`): Path (e.g. `"dataset/train"`) or remote URI (e.g. `"s3://my-bucket/dataset/train"`) of the [`Dataset`] or [`DatasetDict`] directory where the dataset will be loaded from. fs (`~filesystems.S3FileSystem` or `fsspec.spec.AbstractFileSystem`, *optional*): Instance of the remote filesystem used to download the files from. <Deprecated version="2.9.0"> `fs` was deprecated in version 2.9.0 and will be removed in 3.0.0. Please use `storage_options` instead, e.g. `storage_options=fs.storage_options`. </Deprecated> keep_in_memory (`bool`, defaults to `None`): Whether to copy the dataset in-memory. If `None`, the dataset will not be copied in-memory unless explicitly enabled by setting `datasets.config.IN_MEMORY_MAX_SIZE` to nonzero. See more details in the [improve performance](../cache#improve-performance) section. storage_options (`dict`, *optional*): Key/value pairs to be passed on to the file-system backend, if any. <Added version="2.9.0"/> Returns: [`Dataset`] or [`DatasetDict`]: - If `dataset_path` is a path of a dataset directory: the dataset requested. - If `dataset_path` is a path of a dataset dict directory, a [`DatasetDict`] with each split. Example: ```py >>> from datasets import load_from_disk >>> ds = load_from_disk('path/to/dataset/directory') ``` """ if fs != "deprecated": warnings.warn( "'fs' was deprecated in favor of 'storage_options' in version 2.9.0 and will be removed in 3.0.0.\n" "You can remove this warning by passing 'storage_options=fs.storage_options' instead.", FutureWarning, ) storage_options = fs.storage_options fs_token_paths = fsspec.get_fs_token_paths(dataset_path, storage_options=storage_options) fs: fsspec.AbstractFileSystem = fs_token_paths[0] # gets filesystem from dataset, either s3:// or file:// and adjusted dataset_path if is_remote_filesystem(fs): dest_dataset_path = extract_path_from_uri(dataset_path) path_join = posixpath.join else: fs = fsspec.filesystem("file") dest_dataset_path = dataset_path path_join = os.path.join if not fs.exists(dest_dataset_path): raise FileNotFoundError(f"Directory {dataset_path} not found") if fs.isfile(path_join(dest_dataset_path, config.DATASET_INFO_FILENAME)) and fs.isfile( path_join(dest_dataset_path, config.DATASET_STATE_JSON_FILENAME) ): return Dataset.load_from_disk(dataset_path, keep_in_memory=keep_in_memory, storage_options=storage_options) elif fs.isfile(path_join(dest_dataset_path, config.DATASETDICT_JSON_FILENAME)): return DatasetDict.load_from_disk(dataset_path, keep_in_memory=keep_in_memory, storage_options=storage_options) else: raise FileNotFoundError( f"Directory {dataset_path} is neither a `Dataset` directory nor a `DatasetDict` directory." )
datasets-main
src/datasets/load.py
import importlib import inspect from functools import wraps from typing import TYPE_CHECKING, Optional from .download.download_config import DownloadConfig from .download.streaming_download_manager import ( xbasename, xdirname, xet_parse, xexists, xgetsize, xglob, xgzip_open, xisdir, xisfile, xjoin, xlistdir, xnumpy_load, xopen, xpandas_read_csv, xpandas_read_excel, xPath, xrelpath, xsio_loadmat, xsplit, xsplitext, xwalk, xxml_dom_minidom_parse, ) from .utils.logging import get_logger from .utils.patching import patch_submodule from .utils.py_utils import get_imports logger = get_logger(__name__) if TYPE_CHECKING: from .builder import DatasetBuilder def extend_module_for_streaming(module_path, download_config: Optional[DownloadConfig] = None): """Extend the module to support streaming. We patch some functions in the module to use `fsspec` to support data streaming: - We use `fsspec.open` to open and read remote files. We patch the module function: - `open` - We use the "::" hop separator to join paths and navigate remote compressed/archive files. We patch the module functions: - `os.path.join` - `pathlib.Path.joinpath` and `pathlib.Path.__truediv__` (called when using the "/" operator) The patched functions are replaced with custom functions defined to work with the :class:`~download.streaming_download_manager.StreamingDownloadManager`. Args: module_path: Path to the module to be extended. download_config : mainly use use_auth_token or storage_options to support different platforms and auth types. """ module = importlib.import_module(module_path) # TODO(QL): always update the module to add subsequent new authentication without removing old ones if hasattr(module, "_patched_for_streaming") and module._patched_for_streaming: if isinstance(module._patched_for_streaming, DownloadConfig): module._patched_for_streaming.token = download_config.token module._patched_for_streaming.storage_options = download_config.storage_options return def wrap_auth(function): @wraps(function) def wrapper(*args, **kwargs): return function(*args, download_config=download_config, **kwargs) wrapper._decorator_name_ = "wrap_auth" return wrapper # open files in a streaming fashion patch_submodule(module, "open", wrap_auth(xopen)).start() patch_submodule(module, "os.listdir", wrap_auth(xlistdir)).start() patch_submodule(module, "os.walk", wrap_auth(xwalk)).start() patch_submodule(module, "glob.glob", wrap_auth(xglob)).start() # allow to navigate in remote zip files patch_submodule(module, "os.path.join", xjoin).start() patch_submodule(module, "os.path.dirname", xdirname).start() patch_submodule(module, "os.path.basename", xbasename).start() patch_submodule(module, "os.path.relpath", xrelpath).start() patch_submodule(module, "os.path.split", xsplit).start() patch_submodule(module, "os.path.splitext", xsplitext).start() # allow checks on paths patch_submodule(module, "os.path.exists", wrap_auth(xexists)).start() patch_submodule(module, "os.path.isdir", wrap_auth(xisdir)).start() patch_submodule(module, "os.path.isfile", wrap_auth(xisfile)).start() patch_submodule(module, "os.path.getsize", wrap_auth(xgetsize)).start() patch_submodule(module, "pathlib.Path", xPath).start() # file readers patch_submodule(module, "gzip.open", wrap_auth(xgzip_open)).start() patch_submodule(module, "numpy.load", wrap_auth(xnumpy_load)).start() patch_submodule(module, "pandas.read_csv", wrap_auth(xpandas_read_csv), attrs=["__version__"]).start() patch_submodule(module, "pandas.read_excel", wrap_auth(xpandas_read_excel), attrs=["__version__"]).start() patch_submodule(module, "scipy.io.loadmat", wrap_auth(xsio_loadmat), attrs=["__version__"]).start() patch_submodule(module, "xml.etree.ElementTree.parse", wrap_auth(xet_parse)).start() patch_submodule(module, "xml.dom.minidom.parse", wrap_auth(xxml_dom_minidom_parse)).start() module._patched_for_streaming = download_config def extend_dataset_builder_for_streaming(builder: "DatasetBuilder"): """Extend the dataset builder module and the modules imported by it to support streaming. Args: builder (:class:`DatasetBuilder`): Dataset builder instance. """ # this extends the open and os.path.join functions for data streaming download_config = DownloadConfig(storage_options=builder.storage_options, token=builder.token) extend_module_for_streaming(builder.__module__, download_config=download_config) # if needed, we also have to extend additional internal imports (like wmt14 -> wmt_utils) if not builder.__module__.startswith("datasets."): # check that it's not a packaged builder like csv for imports in get_imports(inspect.getfile(builder.__class__)): if imports[0] == "internal": internal_import_name = imports[1] internal_module_name = ".".join(builder.__module__.split(".")[:-1] + [internal_import_name]) extend_module_for_streaming(internal_module_name, download_config=download_config) # builders can inherit from other builders that might use streaming functionality # (for example, ImageFolder and AudioFolder inherit from FolderBuilder which implements examples generation) # but these parents builders are not patched automatically as they are not instantiated, so we patch them here from .builder import DatasetBuilder parent_builder_modules = [ cls.__module__ for cls in type(builder).__mro__[1:] # make sure it's not the same module we've already patched if issubclass(cls, DatasetBuilder) and cls.__module__ != DatasetBuilder.__module__ ] # check it's not a standard builder from datasets.builder for module in parent_builder_modules: extend_module_for_streaming(module, download_config=download_config)
datasets-main
src/datasets/streaming.py
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """ DatasetInfo and MetricInfo record information we know about a dataset and a metric. This includes things that we know about the dataset statically, i.e.: - description - canonical location - does it have validation and tests splits - size - etc. This also includes the things that can and should be computed once we've processed the dataset as well: - number of examples (in each split) - etc. """ import copy import dataclasses import json import os import posixpath import warnings from dataclasses import dataclass from pathlib import Path from typing import ClassVar, Dict, List, Optional, Union import fsspec from huggingface_hub import DatasetCard, DatasetCardData from . import config from .features import Features, Value from .filesystems import is_remote_filesystem from .splits import SplitDict from .tasks import TaskTemplate, task_template_from_dict from .utils import Version from .utils.logging import get_logger from .utils.py_utils import asdict, unique_values logger = get_logger(__name__) @dataclass class SupervisedKeysData: input: str = "" output: str = "" @dataclass class DownloadChecksumsEntryData: key: str = "" value: str = "" class MissingCachedSizesConfigError(Exception): """The expected cached sizes of the download file are missing.""" class NonMatchingCachedSizesError(Exception): """The prepared split doesn't have expected sizes.""" @dataclass class PostProcessedInfo: features: Optional[Features] = None resources_checksums: Optional[dict] = None def __post_init__(self): # Convert back to the correct classes when we reload from dict if self.features is not None and not isinstance(self.features, Features): self.features = Features.from_dict(self.features) @classmethod def from_dict(cls, post_processed_info_dict: dict) -> "PostProcessedInfo": field_names = {f.name for f in dataclasses.fields(cls)} return cls(**{k: v for k, v in post_processed_info_dict.items() if k in field_names}) @dataclass class DatasetInfo: """Information about a dataset. `DatasetInfo` documents datasets, including its name, version, and features. See the constructor arguments and properties for a full list. Not all fields are known on construction and may be updated later. Attributes: description (`str`): A description of the dataset. citation (`str`): A BibTeX citation of the dataset. homepage (`str`): A URL to the official homepage for the dataset. license (`str`): The dataset's license. It can be the name of the license or a paragraph containing the terms of the license. features ([`Features`], *optional*): The features used to specify the dataset's column types. post_processed (`PostProcessedInfo`, *optional*): Information regarding the resources of a possible post-processing of a dataset. For example, it can contain the information of an index. supervised_keys (`SupervisedKeysData`, *optional*): Specifies the input feature and the label for supervised learning if applicable for the dataset (legacy from TFDS). builder_name (`str`, *optional*): The name of the `GeneratorBasedBuilder` subclass used to create the dataset. Usually matched to the corresponding script name. It is also the snake_case version of the dataset builder class name. config_name (`str`, *optional*): The name of the configuration derived from [`BuilderConfig`]. version (`str` or [`Version`], *optional*): The version of the dataset. splits (`dict`, *optional*): The mapping between split name and metadata. download_checksums (`dict`, *optional*): The mapping between the URL to download the dataset's checksums and corresponding metadata. download_size (`int`, *optional*): The size of the files to download to generate the dataset, in bytes. post_processing_size (`int`, *optional*): Size of the dataset in bytes after post-processing, if any. dataset_size (`int`, *optional*): The combined size in bytes of the Arrow tables for all splits. size_in_bytes (`int`, *optional*): The combined size in bytes of all files associated with the dataset (downloaded files + Arrow files). task_templates (`List[TaskTemplate]`, *optional*): The task templates to prepare the dataset for during training and evaluation. Each template casts the dataset's [`Features`] to standardized column names and types as detailed in `datasets.tasks`. **config_kwargs (additional keyword arguments): Keyword arguments to be passed to the [`BuilderConfig`] and used in the [`DatasetBuilder`]. """ # Set in the dataset scripts description: str = dataclasses.field(default_factory=str) citation: str = dataclasses.field(default_factory=str) homepage: str = dataclasses.field(default_factory=str) license: str = dataclasses.field(default_factory=str) features: Optional[Features] = None post_processed: Optional[PostProcessedInfo] = None supervised_keys: Optional[SupervisedKeysData] = None task_templates: Optional[List[TaskTemplate]] = None # Set later by the builder builder_name: Optional[str] = None dataset_name: Optional[str] = None # for packaged builders, to be different from builder_name config_name: Optional[str] = None version: Optional[Union[str, Version]] = None # Set later by `download_and_prepare` splits: Optional[dict] = None download_checksums: Optional[dict] = None download_size: Optional[int] = None post_processing_size: Optional[int] = None dataset_size: Optional[int] = None size_in_bytes: Optional[int] = None _INCLUDED_INFO_IN_YAML: ClassVar[List[str]] = [ "config_name", "download_size", "dataset_size", "features", "splits", ] def __post_init__(self): # Convert back to the correct classes when we reload from dict if self.features is not None and not isinstance(self.features, Features): self.features = Features.from_dict(self.features) if self.post_processed is not None and not isinstance(self.post_processed, PostProcessedInfo): self.post_processed = PostProcessedInfo.from_dict(self.post_processed) if self.version is not None and not isinstance(self.version, Version): if isinstance(self.version, str): self.version = Version(self.version) else: self.version = Version.from_dict(self.version) if self.splits is not None and not isinstance(self.splits, SplitDict): self.splits = SplitDict.from_split_dict(self.splits) if self.supervised_keys is not None and not isinstance(self.supervised_keys, SupervisedKeysData): if isinstance(self.supervised_keys, (tuple, list)): self.supervised_keys = SupervisedKeysData(*self.supervised_keys) else: self.supervised_keys = SupervisedKeysData(**self.supervised_keys) # Parse and make a list of templates if self.task_templates is not None: if isinstance(self.task_templates, (list, tuple)): templates = [ template if isinstance(template, TaskTemplate) else task_template_from_dict(template) for template in self.task_templates ] self.task_templates = [template for template in templates if template is not None] elif isinstance(self.task_templates, TaskTemplate): self.task_templates = [self.task_templates] else: template = task_template_from_dict(self.task_templates) self.task_templates = [template] if template is not None else [] # Align task templates with features if self.task_templates is not None: self.task_templates = list(self.task_templates) if self.features is not None: self.task_templates = [ template.align_with_features(self.features) for template in (self.task_templates) ] def write_to_directory( self, dataset_info_dir, pretty_print=False, fs="deprecated", storage_options: Optional[dict] = None ): """Write `DatasetInfo` and license (if present) as JSON files to `dataset_info_dir`. Args: dataset_info_dir (`str`): Destination directory. pretty_print (`bool`, defaults to `False`): If `True`, the JSON will be pretty-printed with the indent level of 4. fs (`fsspec.spec.AbstractFileSystem`, *optional*): Instance of the remote filesystem used to download the files from. <Deprecated version="2.9.0"> `fs` was deprecated in version 2.9.0 and will be removed in 3.0.0. Please use `storage_options` instead, e.g. `storage_options=fs.storage_options`. </Deprecated> storage_options (`dict`, *optional*): Key/value pairs to be passed on to the file-system backend, if any. <Added version="2.9.0"/> Example: ```py >>> from datasets import load_dataset >>> ds = load_dataset("rotten_tomatoes", split="validation") >>> ds.info.write_to_directory("/path/to/directory/") ``` """ if fs != "deprecated": warnings.warn( "'fs' was deprecated in favor of 'storage_options' in version 2.9.0 and will be removed in 3.0.0.\n" "You can remove this warning by passing 'storage_options=fs.storage_options' instead.", FutureWarning, ) storage_options = fs.storage_options fs_token_paths = fsspec.get_fs_token_paths(dataset_info_dir, storage_options=storage_options) fs: fsspec.AbstractFileSystem = fs_token_paths[0] is_local = not is_remote_filesystem(fs) path_join = os.path.join if is_local else posixpath.join with fs.open(path_join(dataset_info_dir, config.DATASET_INFO_FILENAME), "wb") as f: self._dump_info(f, pretty_print=pretty_print) if self.license: with fs.open(path_join(dataset_info_dir, config.LICENSE_FILENAME), "wb") as f: self._dump_license(f) def _dump_info(self, file, pretty_print=False): """Dump info in `file` file-like object open in bytes mode (to support remote files)""" file.write(json.dumps(asdict(self), indent=4 if pretty_print else None).encode("utf-8")) def _dump_license(self, file): """Dump license in `file` file-like object open in bytes mode (to support remote files)""" file.write(self.license.encode("utf-8")) @classmethod def from_merge(cls, dataset_infos: List["DatasetInfo"]): dataset_infos = [dset_info.copy() for dset_info in dataset_infos if dset_info is not None] description = "\n\n".join(unique_values(info.description for info in dataset_infos)).strip() citation = "\n\n".join(unique_values(info.citation for info in dataset_infos)).strip() homepage = "\n\n".join(unique_values(info.homepage for info in dataset_infos)).strip() license = "\n\n".join(unique_values(info.license for info in dataset_infos)).strip() features = None supervised_keys = None task_templates = None # Find common task templates across all dataset infos all_task_templates = [info.task_templates for info in dataset_infos if info.task_templates is not None] if len(all_task_templates) > 1: task_templates = list(set(all_task_templates[0]).intersection(*all_task_templates[1:])) elif len(all_task_templates): task_templates = list(set(all_task_templates[0])) # If no common task templates found, replace empty list with None task_templates = task_templates if task_templates else None return cls( description=description, citation=citation, homepage=homepage, license=license, features=features, supervised_keys=supervised_keys, task_templates=task_templates, ) @classmethod def from_directory( cls, dataset_info_dir: str, fs="deprecated", storage_options: Optional[dict] = None ) -> "DatasetInfo": """Create [`DatasetInfo`] from the JSON file in `dataset_info_dir`. This function updates all the dynamically generated fields (num_examples, hash, time of creation,...) of the [`DatasetInfo`]. This will overwrite all previous metadata. Args: dataset_info_dir (`str`): The directory containing the metadata file. This should be the root directory of a specific dataset version. fs (`fsspec.spec.AbstractFileSystem`, *optional*): Instance of the remote filesystem used to download the files from. <Deprecated version="2.9.0"> `fs` was deprecated in version 2.9.0 and will be removed in 3.0.0. Please use `storage_options` instead, e.g. `storage_options=fs.storage_options`. </Deprecated> storage_options (`dict`, *optional*): Key/value pairs to be passed on to the file-system backend, if any. <Added version="2.9.0"/> Example: ```py >>> from datasets import DatasetInfo >>> ds_info = DatasetInfo.from_directory("/path/to/directory/") ``` """ if fs != "deprecated": warnings.warn( "'fs' was deprecated in favor of 'storage_options' in version 2.9.0 and will be removed in 3.0.0.\n" "You can remove this warning by passing 'storage_options=fs.storage_options' instead.", FutureWarning, ) storage_options = fs.storage_options fs_token_paths = fsspec.get_fs_token_paths(dataset_info_dir, storage_options=storage_options) fs: fsspec.AbstractFileSystem = fs_token_paths[0] logger.info(f"Loading Dataset info from {dataset_info_dir}") if not dataset_info_dir: raise ValueError("Calling DatasetInfo.from_directory() with undefined dataset_info_dir.") is_local = not is_remote_filesystem(fs) path_join = os.path.join if is_local else posixpath.join with fs.open(path_join(dataset_info_dir, config.DATASET_INFO_FILENAME), "r", encoding="utf-8") as f: dataset_info_dict = json.load(f) return cls.from_dict(dataset_info_dict) @classmethod def from_dict(cls, dataset_info_dict: dict) -> "DatasetInfo": field_names = {f.name for f in dataclasses.fields(cls)} return cls(**{k: v for k, v in dataset_info_dict.items() if k in field_names}) def update(self, other_dataset_info: "DatasetInfo", ignore_none=True): self_dict = self.__dict__ self_dict.update( **{ k: copy.deepcopy(v) for k, v in other_dataset_info.__dict__.items() if (v is not None or not ignore_none) } ) def copy(self) -> "DatasetInfo": return self.__class__(**{k: copy.deepcopy(v) for k, v in self.__dict__.items()}) def _to_yaml_dict(self) -> dict: yaml_dict = {} dataset_info_dict = asdict(self) for key in dataset_info_dict: if key in self._INCLUDED_INFO_IN_YAML: value = getattr(self, key) if hasattr(value, "_to_yaml_list"): # Features, SplitDict yaml_dict[key] = value._to_yaml_list() elif hasattr(value, "_to_yaml_string"): # Version yaml_dict[key] = value._to_yaml_string() else: yaml_dict[key] = value return yaml_dict @classmethod def _from_yaml_dict(cls, yaml_data: dict) -> "DatasetInfo": yaml_data = copy.deepcopy(yaml_data) if yaml_data.get("features") is not None: yaml_data["features"] = Features._from_yaml_list(yaml_data["features"]) if yaml_data.get("splits") is not None: yaml_data["splits"] = SplitDict._from_yaml_list(yaml_data["splits"]) field_names = {f.name for f in dataclasses.fields(cls)} return cls(**{k: v for k, v in yaml_data.items() if k in field_names}) class DatasetInfosDict(Dict[str, DatasetInfo]): def write_to_directory(self, dataset_infos_dir, overwrite=False, pretty_print=False) -> None: total_dataset_infos = {} dataset_infos_path = os.path.join(dataset_infos_dir, config.DATASETDICT_INFOS_FILENAME) dataset_readme_path = os.path.join(dataset_infos_dir, "README.md") if not overwrite: total_dataset_infos = self.from_directory(dataset_infos_dir) total_dataset_infos.update(self) if os.path.exists(dataset_infos_path): # for backward compatibility, let's update the JSON file if it exists with open(dataset_infos_path, "w", encoding="utf-8") as f: dataset_infos_dict = { config_name: asdict(dset_info) for config_name, dset_info in total_dataset_infos.items() } json.dump(dataset_infos_dict, f, indent=4 if pretty_print else None) # Dump the infos in the YAML part of the README.md file if os.path.exists(dataset_readme_path): dataset_card = DatasetCard.load(dataset_readme_path) dataset_card_data = dataset_card.data else: dataset_card = None dataset_card_data = DatasetCardData() if total_dataset_infos: total_dataset_infos.to_dataset_card_data(dataset_card_data) dataset_card = ( DatasetCard("---\n" + str(dataset_card_data) + "\n---\n") if dataset_card is None else dataset_card ) dataset_card.save(Path(dataset_readme_path)) @classmethod def from_directory(cls, dataset_infos_dir) -> "DatasetInfosDict": logger.info(f"Loading Dataset Infos from {dataset_infos_dir}") # Load the info from the YAML part of README.md if os.path.exists(os.path.join(dataset_infos_dir, "README.md")): dataset_card_data = DatasetCard.load(Path(dataset_infos_dir) / "README.md").data if "dataset_info" in dataset_card_data: return cls.from_dataset_card_data(dataset_card_data) if os.path.exists(os.path.join(dataset_infos_dir, config.DATASETDICT_INFOS_FILENAME)): # this is just to have backward compatibility with dataset_infos.json files with open(os.path.join(dataset_infos_dir, config.DATASETDICT_INFOS_FILENAME), encoding="utf-8") as f: return cls( { config_name: DatasetInfo.from_dict(dataset_info_dict) for config_name, dataset_info_dict in json.load(f).items() } ) else: return cls() @classmethod def from_dataset_card_data(cls, dataset_card_data: DatasetCardData) -> "DatasetInfosDict": if isinstance(dataset_card_data.get("dataset_info"), (list, dict)): if isinstance(dataset_card_data["dataset_info"], list): return cls( { dataset_info_yaml_dict.get("config_name", "default"): DatasetInfo._from_yaml_dict( dataset_info_yaml_dict ) for dataset_info_yaml_dict in dataset_card_data["dataset_info"] } ) else: dataset_info = DatasetInfo._from_yaml_dict(dataset_card_data["dataset_info"]) dataset_info.config_name = dataset_card_data["dataset_info"].get("config_name", "default") return cls({dataset_info.config_name: dataset_info}) else: return cls() def to_dataset_card_data(self, dataset_card_data: DatasetCardData) -> None: if self: # first get existing metadata info if "dataset_info" in dataset_card_data and isinstance(dataset_card_data["dataset_info"], dict): dataset_metadata_infos = { dataset_card_data["dataset_info"].get("config_name", "default"): dataset_card_data["dataset_info"] } elif "dataset_info" in dataset_card_data and isinstance(dataset_card_data["dataset_info"], list): dataset_metadata_infos = { config_metadata["config_name"]: config_metadata for config_metadata in dataset_card_data["dataset_info"] } else: dataset_metadata_infos = {} # update/rewrite existing metadata info with the one to dump total_dataset_infos = { **dataset_metadata_infos, **{config_name: dset_info._to_yaml_dict() for config_name, dset_info in self.items()}, } # the config_name from the dataset_infos_dict takes over the config_name of the DatasetInfo for config_name, dset_info_yaml_dict in total_dataset_infos.items(): dset_info_yaml_dict["config_name"] = config_name if len(total_dataset_infos) == 1: # use a struct instead of a list of configurations, since there's only one dataset_card_data["dataset_info"] = next(iter(total_dataset_infos.values())) config_name = dataset_card_data["dataset_info"].pop("config_name", None) if config_name != "default": # if config_name is not "default" preserve it and put at the first position dataset_card_data["dataset_info"] = { "config_name": config_name, **dataset_card_data["dataset_info"], } else: dataset_card_data["dataset_info"] = [] for config_name, dataset_info_yaml_dict in sorted(total_dataset_infos.items()): # add the config_name field in first position dataset_info_yaml_dict.pop("config_name", None) dataset_info_yaml_dict = {"config_name": config_name, **dataset_info_yaml_dict} dataset_card_data["dataset_info"].append(dataset_info_yaml_dict) @dataclass class MetricInfo: """Information about a metric. `MetricInfo` documents a metric, including its name, version, and features. See the constructor arguments and properties for a full list. Note: Not all fields are known on construction and may be updated later. """ # Set in the dataset scripts description: str citation: str features: Features inputs_description: str = dataclasses.field(default_factory=str) homepage: str = dataclasses.field(default_factory=str) license: str = dataclasses.field(default_factory=str) codebase_urls: List[str] = dataclasses.field(default_factory=list) reference_urls: List[str] = dataclasses.field(default_factory=list) streamable: bool = False format: Optional[str] = None # Set later by the builder metric_name: Optional[str] = None config_name: Optional[str] = None experiment_id: Optional[str] = None def __post_init__(self): if self.format is not None: for key, value in self.features.items(): if not isinstance(value, Value): raise ValueError( f"When using 'numpy' format, all features should be a `datasets.Value` feature. " f"Here {key} is an instance of {value.__class__.__name__}" ) def write_to_directory(self, metric_info_dir, pretty_print=False): """Write `MetricInfo` as JSON to `metric_info_dir`. Also save the license separately in LICENCE. If `pretty_print` is True, the JSON will be pretty-printed with the indent level of 4. Example: ```py >>> from datasets import load_metric >>> metric = load_metric("accuracy") >>> metric.info.write_to_directory("/path/to/directory/") ``` """ with open(os.path.join(metric_info_dir, config.METRIC_INFO_FILENAME), "w", encoding="utf-8") as f: json.dump(asdict(self), f, indent=4 if pretty_print else None) if self.license: with open(os.path.join(metric_info_dir, config.LICENSE_FILENAME), "w", encoding="utf-8") as f: f.write(self.license) @classmethod def from_directory(cls, metric_info_dir) -> "MetricInfo": """Create MetricInfo from the JSON file in `metric_info_dir`. Args: metric_info_dir: `str` The directory containing the metadata file. This should be the root directory of a specific dataset version. Example: ```py >>> from datasets import MetricInfo >>> metric_info = MetricInfo.from_directory("/path/to/directory/") ``` """ logger.info(f"Loading Metric info from {metric_info_dir}") if not metric_info_dir: raise ValueError("Calling MetricInfo.from_directory() with undefined metric_info_dir.") with open(os.path.join(metric_info_dir, config.METRIC_INFO_FILENAME), encoding="utf-8") as f: metric_info_dict = json.load(f) return cls.from_dict(metric_info_dict) @classmethod def from_dict(cls, metric_info_dict: dict) -> "MetricInfo": field_names = {f.name for f in dataclasses.fields(cls)} return cls(**{k: v for k, v in metric_info_dict.items() if k in field_names})
datasets-main
src/datasets/info.py
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """ Hashing function for dataset keys using `hashlib.md5` Requirements for the hash function: - Provides a uniformly distributed hash from random space - Adequately fast speed - Working with multiple input types (in this case, `str`, `int` or `bytes`) - Should be platform independent (generates same hash on different OS and systems) The hashing function provides a unique 128-bit integer hash of the key provided. The split name is being used here as the hash salt to avoid having same hashes in different splits due to same keys """ import hashlib from typing import Union def _as_bytes(hash_data: Union[str, int, bytes]) -> bytes: """ Returns the input hash_data in its bytes form Args: hash_data: the hash salt/key to be converted to bytes """ if isinstance(hash_data, bytes): # Data already in bytes, returns as it as return hash_data elif isinstance(hash_data, str): # We keep the data as it as for it ot be later encoded to UTF-8 # However replace `\\` with `/` for Windows compatibility hash_data = hash_data.replace("\\", "/") elif isinstance(hash_data, int): hash_data = str(hash_data) else: # If data is not of the required type, raise error raise InvalidKeyError(hash_data) return hash_data.encode("utf-8") class InvalidKeyError(Exception): """Raises an error when given key is of invalid datatype.""" def __init__(self, hash_data): self.prefix = "\nFAILURE TO GENERATE DATASET: Invalid key type detected" self.err_msg = f"\nFound Key {hash_data} of type {type(hash_data)}" self.suffix = "\nKeys should be either str, int or bytes type" super().__init__(f"{self.prefix}{self.err_msg}{self.suffix}") class DuplicatedKeysError(Exception): """Raise an error when duplicate key found.""" def __init__(self, key, duplicate_key_indices, fix_msg=""): self.key = key self.duplicate_key_indices = duplicate_key_indices self.fix_msg = fix_msg self.prefix = "Found multiple examples generated with the same key" if len(duplicate_key_indices) <= 20: self.err_msg = f"\nThe examples at index {', '.join(duplicate_key_indices)} have the key {key}" else: self.err_msg = f"\nThe examples at index {', '.join(duplicate_key_indices[:20])}... ({len(duplicate_key_indices) - 20} more) have the key {key}" self.suffix = "\n" + fix_msg if fix_msg else "" super().__init__(f"{self.prefix}{self.err_msg}{self.suffix}") class KeyHasher: """KeyHasher class for providing hash using md5""" def __init__(self, hash_salt: str): self._split_md5 = hashlib.md5(_as_bytes(hash_salt)) def hash(self, key: Union[str, int, bytes]) -> int: """Returns 128-bits unique hash of input key Args: key: the input key to be hashed (should be str, int or bytes) Returns: 128-bit int hash key""" md5 = self._split_md5.copy() byte_key = _as_bytes(key) md5.update(byte_key) # Convert to integer with hexadecimal conversion return int(md5.hexdigest(), 16)
datasets-main
src/datasets/keyhash.py
from .parallel import parallel_backend, parallel_map, ParallelBackendConfig # noqa F401
datasets-main
src/datasets/parallel/__init__.py
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging logger = logging.get_logger(__name__) class ParallelBackendConfig: backend_name = None @experimental def parallel_map(function, iterable, num_proc, types, disable_tqdm, desc, single_map_nested_func): """ **Experimental.** Apply a function to iterable elements in parallel, where the implementation uses either multiprocessing.Pool or joblib for parallelization. Args: function (`Callable[[Any], Any]`): Function to be applied to `iterable`. iterable (`list`, `tuple` or `np.ndarray`): Iterable elements to apply function to. num_proc (`int`): Number of processes (if no backend specified) or jobs (using joblib). types (`tuple`): Additional types (besides `dict` values) to apply `function` recursively to their elements. disable_tqdm (`bool`): Whether to disable the tqdm progressbar. desc (`str`): Prefix for the tqdm progressbar. single_map_nested_func (`Callable`): Map function that applies `function` to an element from `iterable`. Takes a tuple of function, data_struct, types, rank, disable_tqdm, desc as input, where data_struct is an element of `iterable`, and `rank` is used for progress bar. """ if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( function, iterable, num_proc, types, disable_tqdm, desc, single_map_nested_func ) return _map_with_joblib(function, iterable, num_proc, types, disable_tqdm, desc, single_map_nested_func) def _map_with_multiprocessing_pool(function, iterable, num_proc, types, disable_tqdm, desc, single_map_nested_func): num_proc = num_proc if num_proc <= len(iterable) else len(iterable) split_kwds = [] # We organize the splits ourselve (contiguous splits) for index in range(num_proc): div = len(iterable) // num_proc mod = len(iterable) % num_proc start = div * index + min(index, mod) end = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc)) if len(iterable) != sum(len(i[1]) for i in split_kwds): raise ValueError( f"Error dividing inputs iterable among processes. " f"Total number of objects {len(iterable)}, " f"length: {sum(len(i[1]) for i in split_kwds)}" ) logger.info( f"Spawning {num_proc} processes for {len(iterable)} objects in slices of {[len(i[1]) for i in split_kwds]}" ) initargs, initializer = None, None if not disable_tqdm: initargs, initializer = (RLock(),), tqdm.set_lock with Pool(num_proc, initargs=initargs, initializer=initializer) as pool: mapped = pool.map(single_map_nested_func, split_kwds) logger.info(f"Finished {num_proc} processes") mapped = [obj for proc_res in mapped for obj in proc_res] logger.info(f"Unpacked {len(mapped)} objects") return mapped def _map_with_joblib(function, iterable, num_proc, types, disable_tqdm, desc, single_map_nested_func): # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name, n_jobs=num_proc): return joblib.Parallel()( joblib.delayed(single_map_nested_func)((function, obj, types, None, True, None)) for obj in iterable ) @experimental @contextlib.contextmanager def parallel_backend(backend_name: str): """ **Experimental.** Configures the parallel backend for parallelized dataset loading, which uses the parallelization implemented by joblib. Args: backend_name (str): Name of backend for parallelization implementation, has to be supported by joblib. Example usage: ```py with parallel_backend('spark'): dataset = load_dataset(..., num_proc=2) ``` """ ParallelBackendConfig.backend_name = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: ParallelBackendConfig.backend_name = None
datasets-main
src/datasets/parallel/parallel.py
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=True) class QuestionAnsweringExtractive(TaskTemplate): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization task: str = field(default="question-answering-extractive", metadata={"include_in_asdict_even_if_is_default": True}) input_schema: ClassVar[Features] = Features({"question": Value("string"), "context": Value("string")}) label_schema: ClassVar[Features] = Features( { "answers": Sequence( { "text": Value("string"), "answer_start": Value("int32"), } ) } ) question_column: str = "question" context_column: str = "context" answers_column: str = "answers" @property def column_mapping(self) -> Dict[str, str]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
datasets-main
src/datasets/tasks/question_answering.py
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=True) class ImageClassification(TaskTemplate): task: str = field(default="image-classification", metadata={"include_in_asdict_even_if_is_default": True}) input_schema: ClassVar[Features] = Features({"image": Image()}) label_schema: ClassVar[Features] = Features({"labels": ClassLabel}) image_column: str = "image" label_column: str = "labels" def align_with_features(self, features): if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features.") if not isinstance(features[self.label_column], ClassLabel): raise ValueError(f"Column {self.label_column} is not a ClassLabel.") task_template = copy.deepcopy(self) label_schema = self.label_schema.copy() label_schema["labels"] = features[self.label_column] task_template.__dict__["label_schema"] = label_schema return task_template @property def column_mapping(self) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
datasets-main
src/datasets/tasks/image_classification.py
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=True) class LanguageModeling(TaskTemplate): task: str = field(default="language-modeling", metadata={"include_in_asdict_even_if_is_default": True}) input_schema: ClassVar[Features] = Features({"text": Value("string")}) label_schema: ClassVar[Features] = Features({}) text_column: str = "text" @property def column_mapping(self) -> Dict[str, str]: return {self.text_column: "text"}
datasets-main
src/datasets/tasks/language_modeling.py
from typing import Optional from ..utils.logging import get_logger from .audio_classificiation import AudioClassification from .automatic_speech_recognition import AutomaticSpeechRecognition from .base import TaskTemplate from .image_classification import ImageClassification from .language_modeling import LanguageModeling from .question_answering import QuestionAnsweringExtractive from .summarization import Summarization from .text_classification import TextClassification __all__ = [ "AutomaticSpeechRecognition", "AudioClassification", "ImageClassification", "LanguageModeling", "QuestionAnsweringExtractive", "Summarization", "TaskTemplate", "TextClassification", ] logger = get_logger(__name__) NAME2TEMPLATE = { AutomaticSpeechRecognition.task: AutomaticSpeechRecognition, AudioClassification.task: AudioClassification, ImageClassification.task: ImageClassification, LanguageModeling.task: LanguageModeling, QuestionAnsweringExtractive.task: QuestionAnsweringExtractive, Summarization.task: Summarization, TextClassification.task: TextClassification, } def task_template_from_dict(task_template_dict: dict) -> Optional[TaskTemplate]: """Create one of the supported task templates in :py:mod:`datasets.tasks` from a dictionary.""" task_name = task_template_dict.get("task") if task_name is None: logger.warning(f"Couldn't find template for task '{task_name}'. Available templates: {list(NAME2TEMPLATE)}") return None template = NAME2TEMPLATE.get(task_name) return template.from_dict(task_template_dict)
datasets-main
src/datasets/tasks/__init__.py
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=True) class TextClassification(TaskTemplate): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization task: str = field(default="text-classification", metadata={"include_in_asdict_even_if_is_default": True}) input_schema: ClassVar[Features] = Features({"text": Value("string")}) label_schema: ClassVar[Features] = Features({"labels": ClassLabel}) text_column: str = "text" label_column: str = "labels" def align_with_features(self, features): if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features.") if not isinstance(features[self.label_column], ClassLabel): raise ValueError(f"Column {self.label_column} is not a ClassLabel.") task_template = copy.deepcopy(self) label_schema = self.label_schema.copy() label_schema["labels"] = features[self.label_column] task_template.__dict__["label_schema"] = label_schema return task_template @property def column_mapping(self) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
datasets-main
src/datasets/tasks/text_classification.py
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=True) class AutomaticSpeechRecognition(TaskTemplate): task: str = field(default="automatic-speech-recognition", metadata={"include_in_asdict_even_if_is_default": True}) input_schema: ClassVar[Features] = Features({"audio": Audio()}) label_schema: ClassVar[Features] = Features({"transcription": Value("string")}) audio_column: str = "audio" transcription_column: str = "transcription" def align_with_features(self, features): if self.audio_column not in features: raise ValueError(f"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column], Audio): raise ValueError(f"Column {self.audio_column} is not an Audio type.") task_template = copy.deepcopy(self) input_schema = self.input_schema.copy() input_schema["audio"] = features[self.audio_column] task_template.__dict__["input_schema"] = input_schema return task_template @property def column_mapping(self) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
datasets-main
src/datasets/tasks/automatic_speech_recognition.py
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=True) class Summarization(TaskTemplate): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization task: str = field(default="summarization", metadata={"include_in_asdict_even_if_is_default": True}) input_schema: ClassVar[Features] = Features({"text": Value("string")}) label_schema: ClassVar[Features] = Features({"summary": Value("string")}) text_column: str = "text" summary_column: str = "summary" @property def column_mapping(self) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
datasets-main
src/datasets/tasks/summarization.py
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=True) class AudioClassification(TaskTemplate): task: str = field(default="audio-classification", metadata={"include_in_asdict_even_if_is_default": True}) input_schema: ClassVar[Features] = Features({"audio": Audio()}) label_schema: ClassVar[Features] = Features({"labels": ClassLabel}) audio_column: str = "audio" label_column: str = "labels" def align_with_features(self, features): if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features.") if not isinstance(features[self.label_column], ClassLabel): raise ValueError(f"Column {self.label_column} is not a ClassLabel.") task_template = copy.deepcopy(self) label_schema = self.label_schema.copy() label_schema["labels"] = features[self.label_column] task_template.__dict__["label_schema"] = label_schema return task_template @property def column_mapping(self) -> Dict[str, str]: return { self.audio_column: "audio", self.label_column: "labels", }
datasets-main
src/datasets/tasks/audio_classificiation.py
import abc import copy import dataclasses from dataclasses import dataclass from typing import ClassVar, Dict, Type, TypeVar from ..features import Features T = TypeVar("T", bound="TaskTemplate") @dataclass(frozen=True) class TaskTemplate(abc.ABC): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization task: str input_schema: ClassVar[Features] label_schema: ClassVar[Features] def align_with_features(self: T, features: Features) -> T: """ Align features with the task template. """ # No-op return copy.deepcopy(self) @property def features(self) -> Features: return Features(**self.input_schema, **self.label_schema) @property @abc.abstractmethod def column_mapping(self) -> Dict[str, str]: raise NotImplementedError @classmethod def from_dict(cls: Type[T], template_dict: dict) -> T: field_names = {f.name for f in dataclasses.fields(cls)} return cls(**{k: v for k, v in template_dict.items() if k in field_names})
datasets-main
src/datasets/tasks/base.py
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def get_writer_batch_size(features: Features) -> Optional[int]: """ Get the writer_batch_size that defines the maximum row group size in the parquet files. The default in `datasets` is 1,000 but we lower it to 100 for image datasets. This allows to optimize random access to parquet file, since accessing 1 row requires to read its entire row group. This can be improved to get optimized size for querying/iterating but at least it matches the dataset viewer expectations on HF. Args: ds_config_info (`datasets.info.DatasetInfo`): Dataset info from `datasets`. Returns: writer_batch_size (`Optional[int]`): Writer batch size to pass to a dataset builder. If `None`, then it will use the `datasets` default. """ batch_size = np.inf def set_batch_size(feature: FeatureType) -> None: nonlocal batch_size if isinstance(feature, Image): batch_size = min(batch_size, config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS) elif isinstance(feature, Audio): batch_size = min(batch_size, config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS) elif isinstance(feature, Value) and feature.dtype == "binary": batch_size = min(batch_size, config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS) _visit(features, set_batch_size) return None if batch_size is np.inf else batch_size class ParquetDatasetReader(AbstractDatasetReader): def __init__( self, path_or_paths: NestedDataStructureLike[PathLike], split: Optional[NamedSplit] = None, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, num_proc: Optional[int] = None, **kwargs, ): super().__init__( path_or_paths, split=split, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, streaming=streaming, num_proc=num_proc, **kwargs, ) path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths} hash = _PACKAGED_DATASETS_MODULES["parquet"][1] self.builder = Parquet( cache_dir=cache_dir, data_files=path_or_paths, features=features, hash=hash, **kwargs, ) def read(self): # Build iterable dataset if self.streaming: dataset = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: download_config = None download_mode = None verification_mode = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, verification_mode=verification_mode, # try_from_hf_gcs=try_from_hf_gcs, base_path=base_path, num_proc=self.num_proc, ) dataset = self.builder.as_dataset( split=self.split, verification_mode=verification_mode, in_memory=self.keep_in_memory ) return dataset class ParquetDatasetWriter: def __init__( self, dataset: Dataset, path_or_buf: Union[PathLike, BinaryIO], batch_size: Optional[int] = None, **parquet_writer_kwargs, ): self.dataset = dataset self.path_or_buf = path_or_buf self.batch_size = batch_size or get_writer_batch_size(dataset.features) self.parquet_writer_kwargs = parquet_writer_kwargs def write(self) -> int: batch_size = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf, (str, bytes, os.PathLike)): with open(self.path_or_buf, "wb+") as buffer: written = self._write(file_obj=buffer, batch_size=batch_size, **self.parquet_writer_kwargs) else: written = self._write(file_obj=self.path_or_buf, batch_size=batch_size, **self.parquet_writer_kwargs) return written def _write(self, file_obj: BinaryIO, batch_size: int, **parquet_writer_kwargs) -> int: """Writes the pyarrow table as Parquet to a binary file handle. Caller is responsible for opening and closing the handle. """ written = 0 _ = parquet_writer_kwargs.pop("path_or_buf", None) schema = self.dataset.features.arrow_schema writer = pq.ParquetWriter(file_obj, schema=schema, **parquet_writer_kwargs) for offset in logging.tqdm( range(0, len(self.dataset), batch_size), unit="ba", disable=not logging.is_progress_bar_enabled(), desc="Creating parquet from Arrow format", ): batch = query_table( table=self.dataset._data, key=slice(offset, offset + batch_size), indices=self.dataset._indices if self.dataset._indices is not None else None, ) writer.write_table(batch) written += batch.nbytes writer.close() return written
datasets-main
src/datasets/io/parquet.py
datasets-main
src/datasets/io/__init__.py
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class GeneratorDatasetInputStream(AbstractDatasetInputStream): def __init__( self, generator: Callable, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, gen_kwargs: Optional[dict] = None, num_proc: Optional[int] = None, **kwargs, ): super().__init__( features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, streaming=streaming, num_proc=num_proc, **kwargs, ) self.builder = Generator( cache_dir=cache_dir, features=features, generator=generator, gen_kwargs=gen_kwargs, **kwargs, ) def read(self): # Build iterable dataset if self.streaming: dataset = self.builder.as_streaming_dataset(split="train") # Build regular (map-style) dataset else: download_config = None download_mode = None verification_mode = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, verification_mode=verification_mode, # try_from_hf_gcs=try_from_hf_gcs, base_path=base_path, num_proc=self.num_proc, ) dataset = self.builder.as_dataset( split="train", verification_mode=verification_mode, in_memory=self.keep_in_memory ) return dataset
datasets-main
src/datasets/io/generator.py
import multiprocessing import os from typing import BinaryIO, Optional, Union from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.csv.csv import Csv from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class CsvDatasetReader(AbstractDatasetReader): def __init__( self, path_or_paths: NestedDataStructureLike[PathLike], split: Optional[NamedSplit] = None, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, num_proc: Optional[int] = None, **kwargs, ): super().__init__( path_or_paths, split=split, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, streaming=streaming, num_proc=num_proc, **kwargs, ) path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths} self.builder = Csv( cache_dir=cache_dir, data_files=path_or_paths, features=features, **kwargs, ) def read(self): # Build iterable dataset if self.streaming: dataset = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: download_config = None download_mode = None verification_mode = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, verification_mode=verification_mode, # try_from_hf_gcs=try_from_hf_gcs, base_path=base_path, num_proc=self.num_proc, ) dataset = self.builder.as_dataset( split=self.split, verification_mode=verification_mode, in_memory=self.keep_in_memory ) return dataset class CsvDatasetWriter: def __init__( self, dataset: Dataset, path_or_buf: Union[PathLike, BinaryIO], batch_size: Optional[int] = None, num_proc: Optional[int] = None, **to_csv_kwargs, ): if num_proc is not None and num_proc <= 0: raise ValueError(f"num_proc {num_proc} must be an integer > 0.") self.dataset = dataset self.path_or_buf = path_or_buf self.batch_size = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE self.num_proc = num_proc self.encoding = "utf-8" self.to_csv_kwargs = to_csv_kwargs def write(self) -> int: _ = self.to_csv_kwargs.pop("path_or_buf", None) header = self.to_csv_kwargs.pop("header", True) index = self.to_csv_kwargs.pop("index", False) if isinstance(self.path_or_buf, (str, bytes, os.PathLike)): with open(self.path_or_buf, "wb+") as buffer: written = self._write(file_obj=buffer, header=header, index=index, **self.to_csv_kwargs) else: written = self._write(file_obj=self.path_or_buf, header=header, index=index, **self.to_csv_kwargs) return written def _batch_csv(self, args): offset, header, index, to_csv_kwargs = args batch = query_table( table=self.dataset.data, key=slice(offset, offset + self.batch_size), indices=self.dataset._indices, ) csv_str = batch.to_pandas().to_csv( path_or_buf=None, header=header if (offset == 0) else False, index=index, **to_csv_kwargs ) return csv_str.encode(self.encoding) def _write(self, file_obj: BinaryIO, header, index, **to_csv_kwargs) -> int: """Writes the pyarrow table as CSV to a binary file handle. Caller is responsible for opening and closing the handle. """ written = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0, len(self.dataset), self.batch_size), unit="ba", disable=not logging.is_progress_bar_enabled(), desc="Creating CSV from Arrow format", ): csv_str = self._batch_csv((offset, header, index, to_csv_kwargs)) written += file_obj.write(csv_str) else: num_rows, batch_size = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for csv_str in logging.tqdm( pool.imap( self._batch_csv, [(offset, header, index, to_csv_kwargs) for offset in range(0, num_rows, batch_size)], ), total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size, unit="ba", disable=not logging.is_progress_bar_enabled(), desc="Creating CSV from Arrow format", ): written += file_obj.write(csv_str) return written
datasets-main
src/datasets/io/csv.py
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class TextDatasetReader(AbstractDatasetReader): def __init__( self, path_or_paths: NestedDataStructureLike[PathLike], split: Optional[NamedSplit] = None, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, num_proc: Optional[int] = None, **kwargs, ): super().__init__( path_or_paths, split=split, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, streaming=streaming, num_proc=num_proc, **kwargs, ) path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths} self.builder = Text( cache_dir=cache_dir, data_files=path_or_paths, features=features, **kwargs, ) def read(self): # Build iterable dataset if self.streaming: dataset = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: download_config = None download_mode = None verification_mode = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, verification_mode=verification_mode, # try_from_hf_gcs=try_from_hf_gcs, base_path=base_path, num_proc=self.num_proc, ) dataset = self.builder.as_dataset( split=self.split, verification_mode=verification_mode, in_memory=self.keep_in_memory ) return dataset
datasets-main
src/datasets/io/text.py
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class SparkDatasetReader(AbstractDatasetReader): """A dataset reader that reads from a Spark DataFrame. When caching, cache materialization is parallelized over Spark; an NFS that is accessible to the driver must be provided. Streaming is not currently supported. """ def __init__( self, df: pyspark.sql.DataFrame, split: Optional[NamedSplit] = None, features: Optional[Features] = None, streaming: bool = True, cache_dir: str = None, keep_in_memory: bool = False, working_dir: str = None, load_from_cache_file: bool = True, file_format: str = "arrow", **kwargs, ): super().__init__( split=split, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, streaming=streaming, **kwargs, ) self._load_from_cache_file = load_from_cache_file self._file_format = file_format self.builder = Spark( df=df, features=features, cache_dir=cache_dir, working_dir=working_dir, **kwargs, ) def read(self): if self.streaming: return self.builder.as_streaming_dataset(split=self.split) download_mode = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=download_mode, file_format=self._file_format, ) return self.builder.as_dataset(split=self.split)
datasets-main
src/datasets/io/spark.py
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlite3 import sqlalchemy class SqlDatasetReader(AbstractDatasetInputStream): def __init__( self, sql: Union[str, "sqlalchemy.sql.Selectable"], con: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"], features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, **kwargs, ): super().__init__(features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, **kwargs) self.builder = Sql( cache_dir=cache_dir, features=features, sql=sql, con=con, **kwargs, ) def read(self): download_config = None download_mode = None verification_mode = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, verification_mode=verification_mode, # try_from_hf_gcs=try_from_hf_gcs, base_path=base_path, ) # Build dataset for splits dataset = self.builder.as_dataset( split="train", verification_mode=verification_mode, in_memory=self.keep_in_memory ) return dataset class SqlDatasetWriter: def __init__( self, dataset: Dataset, name: str, con: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"], batch_size: Optional[int] = None, num_proc: Optional[int] = None, **to_sql_kwargs, ): if num_proc is not None and num_proc <= 0: raise ValueError(f"num_proc {num_proc} must be an integer > 0.") self.dataset = dataset self.name = name self.con = con self.batch_size = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE self.num_proc = num_proc self.to_sql_kwargs = to_sql_kwargs def write(self) -> int: _ = self.to_sql_kwargs.pop("sql", None) _ = self.to_sql_kwargs.pop("con", None) index = self.to_sql_kwargs.pop("index", False) written = self._write(index=index, **self.to_sql_kwargs) return written def _batch_sql(self, args): offset, index, to_sql_kwargs = args to_sql_kwargs = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs batch = query_table( table=self.dataset.data, key=slice(offset, offset + self.batch_size), indices=self.dataset._indices, ) df = batch.to_pandas() num_rows = df.to_sql(self.name, self.con, index=index, **to_sql_kwargs) return num_rows or len(df) def _write(self, index, **to_sql_kwargs) -> int: """Writes the pyarrow table as SQL to a database. Caller is responsible for opening and closing the SQL connection. """ written = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0, len(self.dataset), self.batch_size), unit="ba", disable=not logging.is_progress_bar_enabled(), desc="Creating SQL from Arrow format", ): written += self._batch_sql((offset, index, to_sql_kwargs)) else: num_rows, batch_size = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql, [(offset, index, to_sql_kwargs) for offset in range(0, num_rows, batch_size)], ), total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size, unit="ba", disable=not logging.is_progress_bar_enabled(), desc="Creating SQL from Arrow format", ): written += num_rows return written
datasets-main
src/datasets/io/sql.py
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class JsonDatasetReader(AbstractDatasetReader): def __init__( self, path_or_paths: NestedDataStructureLike[PathLike], split: Optional[NamedSplit] = None, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, field: Optional[str] = None, num_proc: Optional[int] = None, **kwargs, ): super().__init__( path_or_paths, split=split, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, streaming=streaming, num_proc=num_proc, **kwargs, ) self.field = field path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths} self.builder = Json( cache_dir=cache_dir, data_files=path_or_paths, features=features, field=field, **kwargs, ) def read(self): # Build iterable dataset if self.streaming: dataset = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: download_config = None download_mode = None verification_mode = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, verification_mode=verification_mode, # try_from_hf_gcs=try_from_hf_gcs, base_path=base_path, num_proc=self.num_proc, ) dataset = self.builder.as_dataset( split=self.split, verification_mode=verification_mode, in_memory=self.keep_in_memory ) return dataset class JsonDatasetWriter: def __init__( self, dataset: Dataset, path_or_buf: Union[PathLike, BinaryIO], batch_size: Optional[int] = None, num_proc: Optional[int] = None, **to_json_kwargs, ): if num_proc is not None and num_proc <= 0: raise ValueError(f"num_proc {num_proc} must be an integer > 0.") self.dataset = dataset self.path_or_buf = path_or_buf self.batch_size = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE self.num_proc = num_proc self.encoding = "utf-8" self.to_json_kwargs = to_json_kwargs def write(self) -> int: _ = self.to_json_kwargs.pop("path_or_buf", None) orient = self.to_json_kwargs.pop("orient", "records") lines = self.to_json_kwargs.pop("lines", True if orient == "records" else False) if "index" not in self.to_json_kwargs and orient in ["split", "table"]: self.to_json_kwargs["index"] = False compression = self.to_json_kwargs.pop("compression", None) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f"`datasets` currently does not support {compression} compression") if isinstance(self.path_or_buf, (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf, "wb", compression=compression) as buffer: written = self._write(file_obj=buffer, orient=orient, lines=lines, **self.to_json_kwargs) else: if compression: raise NotImplementedError( f"The compression parameter is not supported when writing to a buffer, but compression={compression}" " was passed. Please provide a local path instead." ) written = self._write(file_obj=self.path_or_buf, orient=orient, lines=lines, **self.to_json_kwargs) return written def _batch_json(self, args): offset, orient, lines, to_json_kwargs = args batch = query_table( table=self.dataset.data, key=slice(offset, offset + self.batch_size), indices=self.dataset._indices, ) json_str = batch.to_pandas().to_json(path_or_buf=None, orient=orient, lines=lines, **to_json_kwargs) if not json_str.endswith("\n"): json_str += "\n" return json_str.encode(self.encoding) def _write( self, file_obj: BinaryIO, orient, lines, **to_json_kwargs, ) -> int: """Writes the pyarrow table as JSON lines to a binary file handle. Caller is responsible for opening and closing the handle. """ written = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0, len(self.dataset), self.batch_size), unit="ba", disable=not logging.is_progress_bar_enabled(), desc="Creating json from Arrow format", ): json_str = self._batch_json((offset, orient, lines, to_json_kwargs)) written += file_obj.write(json_str) else: num_rows, batch_size = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json, [(offset, orient, lines, to_json_kwargs) for offset in range(0, num_rows, batch_size)], ), total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size, unit="ba", disable=not logging.is_progress_bar_enabled(), desc="Creating json from Arrow format", ): written += file_obj.write(json_str) return written
datasets-main
src/datasets/io/json.py
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class AbstractDatasetReader(ABC): def __init__( self, path_or_paths: Optional[NestedDataStructureLike[PathLike]] = None, split: Optional[NamedSplit] = None, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, num_proc: Optional[int] = None, **kwargs, ): self.path_or_paths = path_or_paths self.split = split if split or isinstance(path_or_paths, dict) else "train" self.features = features self.cache_dir = cache_dir self.keep_in_memory = keep_in_memory self.streaming = streaming self.num_proc = num_proc self.kwargs = kwargs @abstractmethod def read(self) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class AbstractDatasetInputStream(ABC): def __init__( self, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, num_proc: Optional[int] = None, **kwargs, ): self.features = features self.cache_dir = cache_dir self.keep_in_memory = keep_in_memory self.streaming = streaming self.num_proc = num_proc self.kwargs = kwargs @abstractmethod def read(self) -> Union[Dataset, IterableDataset]: pass
datasets-main
src/datasets/io/abc.py
# flake8: noqa __all__ = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", ] from .audio import Audio from .features import Array2D, Array3D, Array4D, Array5D, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
datasets-main
src/datasets/features/__init__.py
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """ This class handle features definition in datasets and some utilities to display table type.""" import copy import json import re import sys from collections.abc import Iterable, Mapping from collections.abc import Sequence as SequenceABC from dataclasses import InitVar, dataclass, field, fields from functools import reduce, wraps from operator import mul from typing import Any, Callable, ClassVar, Dict, List, Optional, Tuple, Union from typing import Sequence as Sequence_ import numpy as np import pandas as pd import pyarrow as pa import pyarrow.compute as pc import pyarrow.types from pandas.api.extensions import ExtensionArray as PandasExtensionArray from pandas.api.extensions import ExtensionDtype as PandasExtensionDtype from .. import config from ..naming import camelcase_to_snakecase, snakecase_to_camelcase from ..table import array_cast from ..utils import logging from ..utils.py_utils import asdict, first_non_null_value, zip_dict from .audio import Audio from .image import Image, encode_pil_image from .translation import Translation, TranslationVariableLanguages logger = logging.get_logger(__name__) def _arrow_to_datasets_dtype(arrow_type: pa.DataType) -> str: """ _arrow_to_datasets_dtype takes a pyarrow.DataType and converts it to a datasets string dtype. In effect, `dt == string_to_arrow(_arrow_to_datasets_dtype(dt))` """ if pyarrow.types.is_null(arrow_type): return "null" elif pyarrow.types.is_boolean(arrow_type): return "bool" elif pyarrow.types.is_int8(arrow_type): return "int8" elif pyarrow.types.is_int16(arrow_type): return "int16" elif pyarrow.types.is_int32(arrow_type): return "int32" elif pyarrow.types.is_int64(arrow_type): return "int64" elif pyarrow.types.is_uint8(arrow_type): return "uint8" elif pyarrow.types.is_uint16(arrow_type): return "uint16" elif pyarrow.types.is_uint32(arrow_type): return "uint32" elif pyarrow.types.is_uint64(arrow_type): return "uint64" elif pyarrow.types.is_float16(arrow_type): return "float16" # pyarrow dtype is "halffloat" elif pyarrow.types.is_float32(arrow_type): return "float32" # pyarrow dtype is "float" elif pyarrow.types.is_float64(arrow_type): return "float64" # pyarrow dtype is "double" elif pyarrow.types.is_time32(arrow_type): return f"time32[{pa.type_for_alias(str(arrow_type)).unit}]" elif pyarrow.types.is_time64(arrow_type): return f"time64[{pa.type_for_alias(str(arrow_type)).unit}]" elif pyarrow.types.is_timestamp(arrow_type): if arrow_type.tz is None: return f"timestamp[{arrow_type.unit}]" elif arrow_type.tz: return f"timestamp[{arrow_type.unit}, tz={arrow_type.tz}]" else: raise ValueError(f"Unexpected timestamp object {arrow_type}.") elif pyarrow.types.is_date32(arrow_type): return "date32" # pyarrow dtype is "date32[day]" elif pyarrow.types.is_date64(arrow_type): return "date64" # pyarrow dtype is "date64[ms]" elif pyarrow.types.is_duration(arrow_type): return f"duration[{arrow_type.unit}]" elif pyarrow.types.is_decimal128(arrow_type): return f"decimal128({arrow_type.precision}, {arrow_type.scale})" elif pyarrow.types.is_decimal256(arrow_type): return f"decimal256({arrow_type.precision}, {arrow_type.scale})" elif pyarrow.types.is_binary(arrow_type): return "binary" elif pyarrow.types.is_large_binary(arrow_type): return "large_binary" elif pyarrow.types.is_string(arrow_type): return "string" elif pyarrow.types.is_large_string(arrow_type): return "large_string" else: raise ValueError(f"Arrow type {arrow_type} does not have a datasets dtype equivalent.") def string_to_arrow(datasets_dtype: str) -> pa.DataType: """ string_to_arrow takes a datasets string dtype and converts it to a pyarrow.DataType. In effect, `dt == string_to_arrow(_arrow_to_datasets_dtype(dt))` This is necessary because the datasets.Value() primitive type is constructed using a string dtype Value(dtype=str) But Features.type (via `get_nested_type()` expects to resolve Features into a pyarrow Schema, which means that each Value() must be able to resolve into a corresponding pyarrow.DataType, which is the purpose of this function. """ def _dtype_error_msg(dtype, pa_dtype, examples=None, urls=None): msg = f"{dtype} is not a validly formatted string representation of the pyarrow {pa_dtype} type." if examples: examples = ", ".join(examples[:-1]) + " or " + examples[-1] if len(examples) > 1 else examples[0] msg += f"\nValid examples include: {examples}." if urls: urls = ", ".join(urls[:-1]) + " and " + urls[-1] if len(urls) > 1 else urls[0] msg += f"\nFor more insformation, see: {urls}." return msg if datasets_dtype in pa.__dict__: return pa.__dict__[datasets_dtype]() if (datasets_dtype + "_") in pa.__dict__: return pa.__dict__[datasets_dtype + "_"]() timestamp_matches = re.search(r"^timestamp\[(.*)\]$", datasets_dtype) if timestamp_matches: timestamp_internals = timestamp_matches.group(1) internals_matches = re.search(r"^(s|ms|us|ns),\s*tz=([a-zA-Z0-9/_+\-:]*)$", timestamp_internals) if timestamp_internals in ["s", "ms", "us", "ns"]: return pa.timestamp(timestamp_internals) elif internals_matches: return pa.timestamp(internals_matches.group(1), internals_matches.group(2)) else: raise ValueError( _dtype_error_msg( datasets_dtype, "timestamp", examples=["timestamp[us]", "timestamp[us, tz=America/New_York"], urls=["https://arrow.apache.org/docs/python/generated/pyarrow.timestamp.html"], ) ) duration_matches = re.search(r"^duration\[(.*)\]$", datasets_dtype) if duration_matches: duration_internals = duration_matches.group(1) if duration_internals in ["s", "ms", "us", "ns"]: return pa.duration(duration_internals) else: raise ValueError( _dtype_error_msg( datasets_dtype, "duration", examples=["duration[s]", "duration[us]"], urls=["https://arrow.apache.org/docs/python/generated/pyarrow.duration.html"], ) ) time_matches = re.search(r"^time(.*)\[(.*)\]$", datasets_dtype) if time_matches: time_internals_bits = time_matches.group(1) if time_internals_bits == "32": time_internals_unit = time_matches.group(2) if time_internals_unit in ["s", "ms"]: return pa.time32(time_internals_unit) else: raise ValueError( f"{time_internals_unit} is not a valid unit for the pyarrow time32 type. Supported units: s (second) and ms (millisecond)." ) elif time_internals_bits == "64": time_internals_unit = time_matches.group(2) if time_internals_unit in ["us", "ns"]: return pa.time64(time_internals_unit) else: raise ValueError( f"{time_internals_unit} is not a valid unit for the pyarrow time64 type. Supported units: us (microsecond) and ns (nanosecond)." ) else: raise ValueError( _dtype_error_msg( datasets_dtype, "time", examples=["time32[s]", "time64[us]"], urls=[ "https://arrow.apache.org/docs/python/generated/pyarrow.time32.html", "https://arrow.apache.org/docs/python/generated/pyarrow.time64.html", ], ) ) decimal_matches = re.search(r"^decimal(.*)\((.*)\)$", datasets_dtype) if decimal_matches: decimal_internals_bits = decimal_matches.group(1) if decimal_internals_bits == "128": decimal_internals_precision_and_scale = re.search(r"^(\d+),\s*(-?\d+)$", decimal_matches.group(2)) if decimal_internals_precision_and_scale: precision = decimal_internals_precision_and_scale.group(1) scale = decimal_internals_precision_and_scale.group(2) return pa.decimal128(int(precision), int(scale)) else: raise ValueError( _dtype_error_msg( datasets_dtype, "decimal128", examples=["decimal128(10, 2)", "decimal128(4, -2)"], urls=["https://arrow.apache.org/docs/python/generated/pyarrow.decimal128.html"], ) ) elif decimal_internals_bits == "256": decimal_internals_precision_and_scale = re.search(r"^(\d+),\s*(-?\d+)$", decimal_matches.group(2)) if decimal_internals_precision_and_scale: precision = decimal_internals_precision_and_scale.group(1) scale = decimal_internals_precision_and_scale.group(2) return pa.decimal256(int(precision), int(scale)) else: raise ValueError( _dtype_error_msg( datasets_dtype, "decimal256", examples=["decimal256(30, 2)", "decimal256(38, -4)"], urls=["https://arrow.apache.org/docs/python/generated/pyarrow.decimal256.html"], ) ) else: raise ValueError( _dtype_error_msg( datasets_dtype, "decimal", examples=["decimal128(12, 3)", "decimal256(40, 6)"], urls=[ "https://arrow.apache.org/docs/python/generated/pyarrow.decimal128.html", "https://arrow.apache.org/docs/python/generated/pyarrow.decimal256.html", ], ) ) raise ValueError( f"Neither {datasets_dtype} nor {datasets_dtype + '_'} seems to be a pyarrow data type. " f"Please make sure to use a correct data type, see: " f"https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions" ) def _cast_to_python_objects(obj: Any, only_1d_for_numpy: bool, optimize_list_casting: bool) -> Tuple[Any, bool]: """ Cast pytorch/tensorflow/pandas objects to python numpy array/lists. It works recursively. If `optimize_list_casting` is True, to avoid iterating over possibly long lists, it first checks (recursively) if the first element that is not None or empty (if it is a sequence) has to be casted. If the first element needs to be casted, then all the elements of the list will be casted, otherwise they'll stay the same. This trick allows to cast objects that contain tokenizers outputs without iterating over every single token for example. Args: obj: the object (nested struct) to cast. only_1d_for_numpy (bool): whether to keep the full multi-dim tensors as multi-dim numpy arrays, or convert them to nested lists of 1-dimensional numpy arrays. This can be useful to keep only 1-d arrays to instantiate Arrow arrays. Indeed Arrow only support converting 1-dimensional array values. optimize_list_casting (bool): whether to optimize list casting by checking the first non-null element to see if it needs to be casted and if it doesn't, not checking the rest of the list elements. Returns: casted_obj: the casted object has_changed (bool): True if the object has been changed, False if it is identical """ if config.TF_AVAILABLE and "tensorflow" in sys.modules: import tensorflow as tf if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if config.JAX_AVAILABLE and "jax" in sys.modules: import jax.numpy as jnp if config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(obj, np.ndarray): if obj.ndim == 0: return obj[()], True elif not only_1d_for_numpy or obj.ndim == 1: return obj, False else: return ( [ _cast_to_python_objects( x, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting )[0] for x in obj ], True, ) elif config.TORCH_AVAILABLE and "torch" in sys.modules and isinstance(obj, torch.Tensor): if obj.ndim == 0: return obj.detach().cpu().numpy()[()], True elif not only_1d_for_numpy or obj.ndim == 1: return obj.detach().cpu().numpy(), True else: return ( [ _cast_to_python_objects( x, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting )[0] for x in obj.detach().cpu().numpy() ], True, ) elif config.TF_AVAILABLE and "tensorflow" in sys.modules and isinstance(obj, tf.Tensor): if obj.ndim == 0: return obj.numpy()[()], True elif not only_1d_for_numpy or obj.ndim == 1: return obj.numpy(), True else: return ( [ _cast_to_python_objects( x, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting )[0] for x in obj.numpy() ], True, ) elif config.JAX_AVAILABLE and "jax" in sys.modules and isinstance(obj, jnp.ndarray): if obj.ndim == 0: return np.asarray(obj)[()], True elif not only_1d_for_numpy or obj.ndim == 1: return np.asarray(obj), True else: return ( [ _cast_to_python_objects( x, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting )[0] for x in np.asarray(obj) ], True, ) elif config.PIL_AVAILABLE and "PIL" in sys.modules and isinstance(obj, PIL.Image.Image): return encode_pil_image(obj), True elif isinstance(obj, pd.Series): return ( _cast_to_python_objects( obj.tolist(), only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting )[0], True, ) elif isinstance(obj, pd.DataFrame): return ( { key: _cast_to_python_objects( value, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting )[0] for key, value in obj.to_dict("list").items() }, True, ) elif isinstance(obj, pd.Timestamp): return obj.to_pydatetime(), True elif isinstance(obj, pd.Timedelta): return obj.to_pytimedelta(), True elif isinstance(obj, Mapping): has_changed = not isinstance(obj, dict) output = {} for k, v in obj.items(): casted_v, has_changed_v = _cast_to_python_objects( v, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting ) has_changed |= has_changed_v output[k] = casted_v return output if has_changed else obj, has_changed elif hasattr(obj, "__array__"): return ( _cast_to_python_objects( obj.__array__(), only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting )[0], True, ) elif isinstance(obj, (list, tuple)): if len(obj) > 0: for first_elmt in obj: if _check_non_null_non_empty_recursive(first_elmt): break casted_first_elmt, has_changed_first_elmt = _cast_to_python_objects( first_elmt, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting ) if has_changed_first_elmt or not optimize_list_casting: return ( [ _cast_to_python_objects( elmt, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting )[0] for elmt in obj ], True, ) else: if isinstance(obj, (list, tuple)): return obj, False else: return list(obj), True else: return obj, False else: return obj, False def cast_to_python_objects(obj: Any, only_1d_for_numpy=False, optimize_list_casting=True) -> Any: """ Cast numpy/pytorch/tensorflow/pandas objects to python lists. It works recursively. If `optimize_list_casting` is True, To avoid iterating over possibly long lists, it first checks (recursively) if the first element that is not None or empty (if it is a sequence) has to be casted. If the first element needs to be casted, then all the elements of the list will be casted, otherwise they'll stay the same. This trick allows to cast objects that contain tokenizers outputs without iterating over every single token for example. Args: obj: the object (nested struct) to cast only_1d_for_numpy (bool, default ``False``): whether to keep the full multi-dim tensors as multi-dim numpy arrays, or convert them to nested lists of 1-dimensional numpy arrays. This can be useful to keep only 1-d arrays to instantiate Arrow arrays. Indeed Arrow only support converting 1-dimensional array values. optimize_list_casting (bool, default ``True``): whether to optimize list casting by checking the first non-null element to see if it needs to be casted and if it doesn't, not checking the rest of the list elements. Returns: casted_obj: the casted object """ return _cast_to_python_objects( obj, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting )[0] @dataclass class Value: """ The `Value` dtypes are as follows: - `null` - `bool` - `int8` - `int16` - `int32` - `int64` - `uint8` - `uint16` - `uint32` - `uint64` - `float16` - `float32` (alias float) - `float64` (alias double) - `time32[(s|ms)]` - `time64[(us|ns)]` - `timestamp[(s|ms|us|ns)]` - `timestamp[(s|ms|us|ns), tz=(tzstring)]` - `date32` - `date64` - `duration[(s|ms|us|ns)]` - `decimal128(precision, scale)` - `decimal256(precision, scale)` - `binary` - `large_binary` - `string` - `large_string` Example: ```py >>> from datasets import Features >>> features = Features({'stars': Value(dtype='int32')}) >>> features {'stars': Value(dtype='int32', id=None)} ``` """ dtype: str id: Optional[str] = None # Automatically constructed pa_type: ClassVar[Any] = None _type: str = field(default="Value", init=False, repr=False) def __post_init__(self): if self.dtype == "double": # fix inferred type self.dtype = "float64" if self.dtype == "float": # fix inferred type self.dtype = "float32" self.pa_type = string_to_arrow(self.dtype) def __call__(self): return self.pa_type def encode_example(self, value): if pa.types.is_boolean(self.pa_type): return bool(value) elif pa.types.is_integer(self.pa_type): return int(value) elif pa.types.is_floating(self.pa_type): return float(value) elif pa.types.is_string(self.pa_type): return str(value) else: return value class _ArrayXD: def __post_init__(self): self.shape = tuple(self.shape) def __call__(self): pa_type = globals()[self.__class__.__name__ + "ExtensionType"](self.shape, self.dtype) return pa_type def encode_example(self, value): return value @dataclass class Array2D(_ArrayXD): """Create a two-dimensional array. Args: shape (`tuple`): The size of each dimension. dtype (`str`): The value of the data type. Example: ```py >>> from datasets import Features >>> features = Features({'x': Array2D(shape=(1, 3), dtype='int32')}) ``` """ shape: tuple dtype: str id: Optional[str] = None # Automatically constructed _type: str = field(default="Array2D", init=False, repr=False) @dataclass class Array3D(_ArrayXD): """Create a three-dimensional array. Args: shape (`tuple`): The size of each dimension. dtype (`str`): The value of the data type. Example: ```py >>> from datasets import Features >>> features = Features({'x': Array3D(shape=(1, 2, 3), dtype='int32')}) ``` """ shape: tuple dtype: str id: Optional[str] = None # Automatically constructed _type: str = field(default="Array3D", init=False, repr=False) @dataclass class Array4D(_ArrayXD): """Create a four-dimensional array. Args: shape (`tuple`): The size of each dimension. dtype (`str`): The value of the data type. Example: ```py >>> from datasets import Features >>> features = Features({'x': Array4D(shape=(1, 2, 2, 3), dtype='int32')}) ``` """ shape: tuple dtype: str id: Optional[str] = None # Automatically constructed _type: str = field(default="Array4D", init=False, repr=False) @dataclass class Array5D(_ArrayXD): """Create a five-dimensional array. Args: shape (`tuple`): The size of each dimension. dtype (`str`): The value of the data type. Example: ```py >>> from datasets import Features >>> features = Features({'x': Array5D(shape=(1, 2, 2, 3, 3), dtype='int32')}) ``` """ shape: tuple dtype: str id: Optional[str] = None # Automatically constructed _type: str = field(default="Array5D", init=False, repr=False) class _ArrayXDExtensionType(pa.PyExtensionType): ndims: Optional[int] = None def __init__(self, shape: tuple, dtype: str): if self.ndims is None or self.ndims <= 1: raise ValueError("You must instantiate an array type with a value for dim that is > 1") if len(shape) != self.ndims: raise ValueError(f"shape={shape} and ndims={self.ndims} don't match") for dim in range(1, self.ndims): if shape[dim] is None: raise ValueError(f"Support only dynamic size on first dimension. Got: {shape}") self.shape = tuple(shape) self.value_type = dtype self.storage_dtype = self._generate_dtype(self.value_type) pa.PyExtensionType.__init__(self, self.storage_dtype) def __reduce__(self): return self.__class__, ( self.shape, self.value_type, ) def __hash__(self): return hash((self.__class__, self.shape, self.value_type)) def __arrow_ext_class__(self): return ArrayExtensionArray def _generate_dtype(self, dtype): dtype = string_to_arrow(dtype) for d in reversed(self.shape): dtype = pa.list_(dtype) # Don't specify the size of the list, since fixed length list arrays have issues # being validated after slicing in pyarrow 0.17.1 return dtype def to_pandas_dtype(self): return PandasArrayExtensionDtype(self.value_type) class Array2DExtensionType(_ArrayXDExtensionType): ndims = 2 class Array3DExtensionType(_ArrayXDExtensionType): ndims = 3 class Array4DExtensionType(_ArrayXDExtensionType): ndims = 4 class Array5DExtensionType(_ArrayXDExtensionType): ndims = 5 def _is_zero_copy_only(pa_type: pa.DataType, unnest: bool = False) -> bool: """ When converting a pyarrow array to a numpy array, we must know whether this could be done in zero-copy or not. This function returns the value of the ``zero_copy_only`` parameter to pass to ``.to_numpy()``, given the type of the pyarrow array. # zero copy is available for all primitive types except booleans and temporal types (date, time, timestamp or duration) # primitive types are types for which the physical representation in arrow and in numpy # https://github.com/wesm/arrow/blob/c07b9b48cf3e0bbbab493992a492ae47e5b04cad/python/pyarrow/types.pxi#L821 # see https://arrow.apache.org/docs/python/generated/pyarrow.Array.html#pyarrow.Array.to_numpy # and https://issues.apache.org/jira/browse/ARROW-2871?jql=text%20~%20%22boolean%20to_numpy%22 """ def _unnest_pa_type(pa_type: pa.DataType) -> pa.DataType: if pa.types.is_list(pa_type): return _unnest_pa_type(pa_type.value_type) return pa_type if unnest: pa_type = _unnest_pa_type(pa_type) return pa.types.is_primitive(pa_type) and not (pa.types.is_boolean(pa_type) or pa.types.is_temporal(pa_type)) class ArrayExtensionArray(pa.ExtensionArray): def __array__(self): zero_copy_only = _is_zero_copy_only(self.storage.type, unnest=True) return self.to_numpy(zero_copy_only=zero_copy_only) def __getitem__(self, i): return self.storage[i] def to_numpy(self, zero_copy_only=True): storage: pa.ListArray = self.storage null_mask = storage.is_null().to_numpy(zero_copy_only=False) if self.type.shape[0] is not None: size = 1 null_indices = np.arange(len(storage))[null_mask] - np.arange(np.sum(null_mask)) for i in range(self.type.ndims): size *= self.type.shape[i] storage = storage.flatten() numpy_arr = storage.to_numpy(zero_copy_only=zero_copy_only) numpy_arr = numpy_arr.reshape(len(self) - len(null_indices), *self.type.shape) if len(null_indices): numpy_arr = np.insert(numpy_arr.astype(np.float64), null_indices, np.nan, axis=0) else: shape = self.type.shape ndims = self.type.ndims arrays = [] first_dim_offsets = np.array([off.as_py() for off in storage.offsets]) for i, is_null in enumerate(null_mask): if is_null: arrays.append(np.nan) else: storage_el = storage[i : i + 1] first_dim = first_dim_offsets[i + 1] - first_dim_offsets[i] # flatten storage for _ in range(ndims): storage_el = storage_el.flatten() numpy_arr = storage_el.to_numpy(zero_copy_only=zero_copy_only) arrays.append(numpy_arr.reshape(first_dim, *shape[1:])) if len(np.unique(np.diff(first_dim_offsets))) > 1: # ragged numpy_arr = np.empty(len(arrays), dtype=object) numpy_arr[:] = arrays else: numpy_arr = np.array(arrays) return numpy_arr def to_pylist(self): zero_copy_only = _is_zero_copy_only(self.storage.type, unnest=True) numpy_arr = self.to_numpy(zero_copy_only=zero_copy_only) if self.type.shape[0] is None and numpy_arr.dtype == object: return [arr.tolist() for arr in numpy_arr.tolist()] else: return numpy_arr.tolist() class PandasArrayExtensionDtype(PandasExtensionDtype): _metadata = "value_type" def __init__(self, value_type: Union["PandasArrayExtensionDtype", np.dtype]): self._value_type = value_type def __from_arrow__(self, array: Union[pa.Array, pa.ChunkedArray]): if isinstance(array, pa.ChunkedArray): array = array.type.wrap_array(pa.concat_arrays([chunk.storage for chunk in array.chunks])) zero_copy_only = _is_zero_copy_only(array.storage.type, unnest=True) numpy_arr = array.to_numpy(zero_copy_only=zero_copy_only) return PandasArrayExtensionArray(numpy_arr) @classmethod def construct_array_type(cls): return PandasArrayExtensionArray @property def type(self) -> type: return np.ndarray @property def kind(self) -> str: return "O" @property def name(self) -> str: return f"array[{self.value_type}]" @property def value_type(self) -> np.dtype: return self._value_type class PandasArrayExtensionArray(PandasExtensionArray): def __init__(self, data: np.ndarray, copy: bool = False): self._data = data if not copy else np.array(data) self._dtype = PandasArrayExtensionDtype(data.dtype) def __array__(self, dtype=None): """ Convert to NumPy Array. Note that Pandas expects a 1D array when dtype is set to object. But for other dtypes, the returned shape is the same as the one of ``data``. More info about pandas 1D requirement for PandasExtensionArray here: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.extensions.ExtensionArray.html#pandas.api.extensions.ExtensionArray """ if dtype == object: out = np.empty(len(self._data), dtype=object) for i in range(len(self._data)): out[i] = self._data[i] return out if dtype is None: return self._data else: return self._data.astype(dtype) def copy(self, deep: bool = False) -> "PandasArrayExtensionArray": return PandasArrayExtensionArray(self._data, copy=True) @classmethod def _from_sequence( cls, scalars, dtype: Optional[PandasArrayExtensionDtype] = None, copy: bool = False ) -> "PandasArrayExtensionArray": if len(scalars) > 1 and all( isinstance(x, np.ndarray) and x.shape == scalars[0].shape and x.dtype == scalars[0].dtype for x in scalars ): data = np.array(scalars, dtype=dtype if dtype is None else dtype.value_type, copy=copy) else: data = np.empty(len(scalars), dtype=object) data[:] = scalars return cls(data, copy=copy) @classmethod def _concat_same_type(cls, to_concat: Sequence_["PandasArrayExtensionArray"]) -> "PandasArrayExtensionArray": if len(to_concat) > 1 and all( va._data.shape == to_concat[0]._data.shape and va._data.dtype == to_concat[0]._data.dtype for va in to_concat ): data = np.vstack([va._data for va in to_concat]) else: data = np.empty(len(to_concat), dtype=object) data[:] = [va._data for va in to_concat] return cls(data, copy=False) @property def dtype(self) -> PandasArrayExtensionDtype: return self._dtype @property def nbytes(self) -> int: return self._data.nbytes def isna(self) -> np.ndarray: return np.array([pd.isna(arr).any() for arr in self._data]) def __setitem__(self, key: Union[int, slice, np.ndarray], value: Any) -> None: raise NotImplementedError() def __getitem__(self, item: Union[int, slice, np.ndarray]) -> Union[np.ndarray, "PandasArrayExtensionArray"]: if isinstance(item, int): return self._data[item] return PandasArrayExtensionArray(self._data[item], copy=False) def take( self, indices: Sequence_[int], allow_fill: bool = False, fill_value: bool = None ) -> "PandasArrayExtensionArray": indices: np.ndarray = np.asarray(indices, dtype=int) if allow_fill: fill_value = ( self.dtype.na_value if fill_value is None else np.asarray(fill_value, dtype=self.dtype.value_type) ) mask = indices == -1 if (indices < -1).any(): raise ValueError("Invalid value in `indices`, must be all >= -1 for `allow_fill` is True") elif len(self) > 0: pass elif not np.all(mask): raise IndexError("Invalid take for empty PandasArrayExtensionArray, must be all -1.") else: data = np.array([fill_value] * len(indices), dtype=self.dtype.value_type) return PandasArrayExtensionArray(data, copy=False) took = self._data.take(indices, axis=0) if allow_fill and mask.any(): took[mask] = [fill_value] * np.sum(mask) return PandasArrayExtensionArray(took, copy=False) def __len__(self) -> int: return len(self._data) def __eq__(self, other) -> np.ndarray: if not isinstance(other, PandasArrayExtensionArray): raise NotImplementedError(f"Invalid type to compare to: {type(other)}") return (self._data == other._data).all() def pandas_types_mapper(dtype): if isinstance(dtype, _ArrayXDExtensionType): return PandasArrayExtensionDtype(dtype.value_type) @dataclass class ClassLabel: """Feature type for integer class labels. There are 3 ways to define a `ClassLabel`, which correspond to the 3 arguments: * `num_classes`: Create 0 to (num_classes-1) labels. * `names`: List of label strings. * `names_file`: File containing the list of labels. Under the hood the labels are stored as integers. You can use negative integers to represent unknown/missing labels. Args: num_classes (`int`, *optional*): Number of classes. All labels must be < `num_classes`. names (`list` of `str`, *optional*): String names for the integer classes. The order in which the names are provided is kept. names_file (`str`, *optional*): Path to a file with names for the integer classes, one per line. Example: ```py >>> from datasets import Features >>> features = Features({'label': ClassLabel(num_classes=3, names=['bad', 'ok', 'good'])}) >>> features {'label': ClassLabel(num_classes=3, names=['bad', 'ok', 'good'], id=None)} ``` """ num_classes: InitVar[Optional[int]] = None # Pseudo-field: ignored by asdict/fields when converting to/from dict names: List[str] = None names_file: InitVar[Optional[str]] = None # Pseudo-field: ignored by asdict/fields when converting to/from dict id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "int64" pa_type: ClassVar[Any] = pa.int64() _str2int: ClassVar[Dict[str, int]] = None _int2str: ClassVar[Dict[int, int]] = None _type: str = field(default="ClassLabel", init=False, repr=False) def __post_init__(self, num_classes, names_file): self.num_classes = num_classes self.names_file = names_file if self.names_file is not None and self.names is not None: raise ValueError("Please provide either names or names_file but not both.") # Set self.names if self.names is None: if self.names_file is not None: self.names = self._load_names_from_file(self.names_file) elif self.num_classes is not None: self.names = [str(i) for i in range(self.num_classes)] else: raise ValueError("Please provide either num_classes, names or names_file.") elif not isinstance(self.names, SequenceABC): raise TypeError(f"Please provide names as a list, is {type(self.names)}") # Set self.num_classes if self.num_classes is None: self.num_classes = len(self.names) elif self.num_classes != len(self.names): raise ValueError( "ClassLabel number of names do not match the defined num_classes. " f"Got {len(self.names)} names VS {self.num_classes} num_classes" ) # Prepare mappings self._int2str = [str(name) for name in self.names] self._str2int = {name: i for i, name in enumerate(self._int2str)} if len(self._int2str) != len(self._str2int): raise ValueError("Some label names are duplicated. Each label name should be unique.") def __call__(self): return self.pa_type def str2int(self, values: Union[str, Iterable]) -> Union[int, Iterable]: """Conversion class name `string` => `integer`. Example: ```py >>> from datasets import load_dataset >>> ds = load_dataset("rotten_tomatoes", split="train") >>> ds.features["label"].str2int('neg') 0 ``` """ if not isinstance(values, str) and not isinstance(values, Iterable): raise ValueError( f"Values {values} should be a string or an Iterable (list, numpy array, pytorch, tensorflow tensors)" ) return_list = True if isinstance(values, str): values = [values] return_list = False output = [self._strval2int(value) for value in values] return output if return_list else output[0] def _strval2int(self, value: str) -> int: failed_parse = False value = str(value) # first attempt - raw string value int_value = self._str2int.get(value) if int_value is None: # second attempt - strip whitespace int_value = self._str2int.get(value.strip()) if int_value is None: # third attempt - convert str to int try: int_value = int(value) except ValueError: failed_parse = True else: if int_value < -1 or int_value >= self.num_classes: failed_parse = True if failed_parse: raise ValueError(f"Invalid string class label {value}") return int_value def int2str(self, values: Union[int, Iterable]) -> Union[str, Iterable]: """Conversion `integer` => class name `string`. Regarding unknown/missing labels: passing negative integers raises `ValueError`. Example: ```py >>> from datasets import load_dataset >>> ds = load_dataset("rotten_tomatoes", split="train") >>> ds.features["label"].int2str(0) 'neg' ``` """ if not isinstance(values, int) and not isinstance(values, Iterable): raise ValueError( f"Values {values} should be an integer or an Iterable (list, numpy array, pytorch, tensorflow tensors)" ) return_list = True if isinstance(values, int): values = [values] return_list = False for v in values: if not 0 <= v < self.num_classes: raise ValueError(f"Invalid integer class label {v:d}") output = [self._int2str[int(v)] for v in values] return output if return_list else output[0] def encode_example(self, example_data): if self.num_classes is None: raise ValueError( "Trying to use ClassLabel feature with undefined number of class. " "Please set ClassLabel.names or num_classes." ) # If a string is given, convert to associated integer if isinstance(example_data, str): example_data = self.str2int(example_data) # Allowing -1 to mean no label. if not -1 <= example_data < self.num_classes: raise ValueError(f"Class label {example_data:d} greater than configured num_classes {self.num_classes}") return example_data def cast_storage(self, storage: Union[pa.StringArray, pa.IntegerArray]) -> pa.Int64Array: """Cast an Arrow array to the `ClassLabel` arrow storage type. The Arrow types that can be converted to the `ClassLabel` pyarrow storage type are: - `pa.string()` - `pa.int()` Args: storage (`Union[pa.StringArray, pa.IntegerArray]`): PyArrow array to cast. Returns: `pa.Int64Array`: Array in the `ClassLabel` arrow storage type. """ if isinstance(storage, pa.IntegerArray) and len(storage) > 0: min_max = pc.min_max(storage).as_py() if min_max["max"] is not None and min_max["max"] >= self.num_classes: raise ValueError( f"Class label {min_max['max']} greater than configured num_classes {self.num_classes}" ) elif isinstance(storage, pa.StringArray): storage = pa.array( [self._strval2int(label) if label is not None else None for label in storage.to_pylist()] ) return array_cast(storage, self.pa_type) @staticmethod def _load_names_from_file(names_filepath): with open(names_filepath, encoding="utf-8") as f: return [name.strip() for name in f.read().split("\n") if name.strip()] # Filter empty names @dataclass class Sequence: """Construct a list of feature from a single type or a dict of types. Mostly here for compatiblity with tfds. Args: feature: A list of features of a single type or a dictionary of types. length (`int`): Length of the sequence. Example: ```py >>> from datasets import Features, Sequence, Value, ClassLabel >>> features = Features({'post': Sequence(feature={'text': Value(dtype='string'), 'upvotes': Value(dtype='int32'), 'label': ClassLabel(num_classes=2, names=['hot', 'cold'])})}) >>> features {'post': Sequence(feature={'text': Value(dtype='string', id=None), 'upvotes': Value(dtype='int32', id=None), 'label': ClassLabel(num_classes=2, names=['hot', 'cold'], id=None)}, length=-1, id=None)} ``` """ feature: Any length: int = -1 id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "list" pa_type: ClassVar[Any] = None _type: str = field(default="Sequence", init=False, repr=False) FeatureType = Union[ dict, list, tuple, Value, ClassLabel, Translation, TranslationVariableLanguages, Sequence, Array2D, Array3D, Array4D, Array5D, Audio, Image, ] def _check_non_null_non_empty_recursive(obj, schema: Optional[FeatureType] = None) -> bool: """ Check if the object is not None. If the object is a list or a tuple, recursively check the first element of the sequence and stop if at any point the first element is not a sequence or is an empty sequence. """ if obj is None: return False elif isinstance(obj, (list, tuple)) and (schema is None or isinstance(schema, (list, tuple, Sequence))): if len(obj) > 0: if schema is None: pass elif isinstance(schema, (list, tuple)): schema = schema[0] else: schema = schema.feature return _check_non_null_non_empty_recursive(obj[0], schema) else: return False else: return True def get_nested_type(schema: FeatureType) -> pa.DataType: """ get_nested_type() converts a datasets.FeatureType into a pyarrow.DataType, and acts as the inverse of generate_from_arrow_type(). It performs double-duty as the implementation of Features.type and handles the conversion of datasets.Feature->pa.struct """ # Nested structures: we allow dict, list/tuples, sequences if isinstance(schema, Features): return pa.struct( {key: get_nested_type(schema[key]) for key in schema} ) # Features is subclass of dict, and dict order is deterministic since Python 3.6 elif isinstance(schema, dict): return pa.struct( {key: get_nested_type(schema[key]) for key in schema} ) # however don't sort on struct types since the order matters elif isinstance(schema, (list, tuple)): if len(schema) != 1: raise ValueError("When defining list feature, you should just provide one example of the inner type") value_type = get_nested_type(schema[0]) return pa.list_(value_type) elif isinstance(schema, Sequence): value_type = get_nested_type(schema.feature) # We allow to reverse list of dict => dict of list for compatibility with tfds if isinstance(schema.feature, dict): return pa.struct({f.name: pa.list_(f.type, schema.length) for f in value_type}) return pa.list_(value_type, schema.length) # Other objects are callable which returns their data type (ClassLabel, Array2D, Translation, Arrow datatype creation methods) return schema() def encode_nested_example(schema, obj, level=0): """Encode a nested example. This is used since some features (in particular ClassLabel) have some logic during encoding. To avoid iterating over possibly long lists, it first checks (recursively) if the first element that is not None or empty (if it is a sequence) has to be encoded. If the first element needs to be encoded, then all the elements of the list will be encoded, otherwise they'll stay the same. """ # Nested structures: we allow dict, list/tuples, sequences if isinstance(schema, dict): if level == 0 and obj is None: raise ValueError("Got None but expected a dictionary instead") return ( { k: encode_nested_example(sub_schema, sub_obj, level=level + 1) for k, (sub_schema, sub_obj) in zip_dict(schema, obj) } if obj is not None else None ) elif isinstance(schema, (list, tuple)): sub_schema = schema[0] if obj is None: return None else: if len(obj) > 0: for first_elmt in obj: if _check_non_null_non_empty_recursive(first_elmt, sub_schema): break if encode_nested_example(sub_schema, first_elmt, level=level + 1) != first_elmt: return [encode_nested_example(sub_schema, o, level=level + 1) for o in obj] return list(obj) elif isinstance(schema, Sequence): if obj is None: return None # We allow to reverse list of dict => dict of list for compatiblity with tfds if isinstance(schema.feature, dict): # dict of list to fill list_dict = {} if isinstance(obj, (list, tuple)): # obj is a list of dict for k, dict_tuples in zip_dict(schema.feature, *obj): list_dict[k] = [encode_nested_example(dict_tuples[0], o, level=level + 1) for o in dict_tuples[1:]] return list_dict else: # obj is a single dict for k, (sub_schema, sub_objs) in zip_dict(schema.feature, obj): list_dict[k] = [encode_nested_example(sub_schema, o, level=level + 1) for o in sub_objs] return list_dict # schema.feature is not a dict if isinstance(obj, str): # don't interpret a string as a list raise ValueError(f"Got a string but expected a list instead: '{obj}'") else: if len(obj) > 0: for first_elmt in obj: if _check_non_null_non_empty_recursive(first_elmt, schema.feature): break # be careful when comparing tensors here if ( not isinstance(first_elmt, list) or encode_nested_example(schema.feature, first_elmt, level=level + 1) != first_elmt ): return [encode_nested_example(schema.feature, o, level=level + 1) for o in obj] return list(obj) # Object with special encoding: # ClassLabel will convert from string to int, TranslationVariableLanguages does some checks elif isinstance(schema, (Audio, Image, ClassLabel, TranslationVariableLanguages, Value, _ArrayXD)): return schema.encode_example(obj) if obj is not None else None # Other object should be directly convertible to a native Arrow type (like Translation and Translation) return obj def decode_nested_example(schema, obj, token_per_repo_id: Optional[Dict[str, Union[str, bool, None]]] = None): """Decode a nested example. This is used since some features (in particular Audio and Image) have some logic during decoding. To avoid iterating over possibly long lists, it first checks (recursively) if the first element that is not None or empty (if it is a sequence) has to be decoded. If the first element needs to be decoded, then all the elements of the list will be decoded, otherwise they'll stay the same. """ # Nested structures: we allow dict, list/tuples, sequences if isinstance(schema, dict): return ( {k: decode_nested_example(sub_schema, sub_obj) for k, (sub_schema, sub_obj) in zip_dict(schema, obj)} if obj is not None else None ) elif isinstance(schema, (list, tuple)): sub_schema = schema[0] if obj is None: return None else: if len(obj) > 0: for first_elmt in obj: if _check_non_null_non_empty_recursive(first_elmt, sub_schema): break if decode_nested_example(sub_schema, first_elmt) != first_elmt: return [decode_nested_example(sub_schema, o) for o in obj] return list(obj) elif isinstance(schema, Sequence): # We allow to reverse list of dict => dict of list for compatiblity with tfds if isinstance(schema.feature, dict): return {k: decode_nested_example([schema.feature[k]], obj[k]) for k in schema.feature} else: return decode_nested_example([schema.feature], obj) # Object with special decoding: elif isinstance(schema, (Audio, Image)): # we pass the token to read and decode files from private repositories in streaming mode if obj is not None and schema.decode: return schema.decode_example(obj, token_per_repo_id=token_per_repo_id) return obj def generate_from_dict(obj: Any): """Regenerate the nested feature object from a deserialized dict. We use the '_type' fields to get the dataclass name to load. generate_from_dict is the recursive helper for Features.from_dict, and allows for a convenient constructor syntax to define features from deserialized JSON dictionaries. This function is used in particular when deserializing a :class:`DatasetInfo` that was dumped to a JSON object. This acts as an analogue to :meth:`Features.from_arrow_schema` and handles the recursive field-by-field instantiation, but doesn't require any mapping to/from pyarrow, except for the fact that it takes advantage of the mapping of pyarrow primitive dtypes that :class:`Value` automatically performs. """ # Nested structures: we allow dict, list/tuples, sequences if isinstance(obj, list): return [generate_from_dict(value) for value in obj] # Otherwise we have a dict or a dataclass if "_type" not in obj or isinstance(obj["_type"], dict): return {key: generate_from_dict(value) for key, value in obj.items()} obj = dict(obj) class_type = globals()[obj.pop("_type")] if class_type == Sequence: return Sequence(feature=generate_from_dict(obj["feature"]), length=obj.get("length", -1)) field_names = {f.name for f in fields(class_type)} return class_type(**{k: v for k, v in obj.items() if k in field_names}) def generate_from_arrow_type(pa_type: pa.DataType) -> FeatureType: """ generate_from_arrow_type accepts an arrow DataType and returns a datasets FeatureType to be used as the type for a single field. This is the high-level arrow->datasets type conversion and is inverted by get_nested_type(). This operates at the individual *field* level, whereas Features.from_arrow_schema() operates at the full schema level and holds the methods that represent the bijection from Features<->pyarrow.Schema """ if isinstance(pa_type, pa.StructType): return {field.name: generate_from_arrow_type(field.type) for field in pa_type} elif isinstance(pa_type, pa.FixedSizeListType): return Sequence(feature=generate_from_arrow_type(pa_type.value_type), length=pa_type.list_size) elif isinstance(pa_type, pa.ListType): feature = generate_from_arrow_type(pa_type.value_type) if isinstance(feature, (dict, tuple, list)): return [feature] return Sequence(feature=feature) elif isinstance(pa_type, _ArrayXDExtensionType): array_feature = [None, None, Array2D, Array3D, Array4D, Array5D][pa_type.ndims] return array_feature(shape=pa_type.shape, dtype=pa_type.value_type) elif isinstance(pa_type, pa.DictionaryType): raise NotImplementedError # TODO(thom) this will need access to the dictionary as well (for labels). I.e. to the py_table elif isinstance(pa_type, pa.DataType): return Value(dtype=_arrow_to_datasets_dtype(pa_type)) else: raise ValueError(f"Cannot convert {pa_type} to a Feature type.") def numpy_to_pyarrow_listarray(arr: np.ndarray, type: pa.DataType = None) -> pa.ListArray: """Build a PyArrow ListArray from a multidimensional NumPy array""" arr = np.array(arr) values = pa.array(arr.flatten(), type=type) for i in range(arr.ndim - 1): n_offsets = reduce(mul, arr.shape[: arr.ndim - i - 1], 1) step_offsets = arr.shape[arr.ndim - i - 1] offsets = pa.array(np.arange(n_offsets + 1) * step_offsets, type=pa.int32()) values = pa.ListArray.from_arrays(offsets, values) return values def list_of_pa_arrays_to_pyarrow_listarray(l_arr: List[Optional[pa.Array]]) -> pa.ListArray: null_mask = np.array([arr is None for arr in l_arr]) null_indices = np.arange(len(null_mask))[null_mask] - np.arange(np.sum(null_mask)) l_arr = [arr for arr in l_arr if arr is not None] offsets = np.cumsum( [0] + [len(arr) for arr in l_arr], dtype=object ) # convert to dtype object to allow None insertion offsets = np.insert(offsets, null_indices, None) offsets = pa.array(offsets, type=pa.int32()) values = pa.concat_arrays(l_arr) return pa.ListArray.from_arrays(offsets, values) def list_of_np_array_to_pyarrow_listarray(l_arr: List[np.ndarray], type: pa.DataType = None) -> pa.ListArray: """Build a PyArrow ListArray from a possibly nested list of NumPy arrays""" if len(l_arr) > 0: return list_of_pa_arrays_to_pyarrow_listarray( [numpy_to_pyarrow_listarray(arr, type=type) if arr is not None else None for arr in l_arr] ) else: return pa.array([], type=type) def contains_any_np_array(data: Any): """Return `True` if data is a NumPy ndarray or (recursively) if first non-null value in list is a NumPy ndarray. Args: data (Any): Data. Returns: bool """ if isinstance(data, np.ndarray): return True elif isinstance(data, list): return contains_any_np_array(first_non_null_value(data)[1]) else: return False def any_np_array_to_pyarrow_listarray(data: Union[np.ndarray, List], type: pa.DataType = None) -> pa.ListArray: """Convert to PyArrow ListArray either a NumPy ndarray or (recursively) a list that may contain any NumPy ndarray. Args: data (Union[np.ndarray, List]): Data. type (pa.DataType): Explicit PyArrow DataType passed to coerce the ListArray data type. Returns: pa.ListArray """ if isinstance(data, np.ndarray): return numpy_to_pyarrow_listarray(data, type=type) elif isinstance(data, list): return list_of_pa_arrays_to_pyarrow_listarray([any_np_array_to_pyarrow_listarray(i, type=type) for i in data]) def to_pyarrow_listarray(data: Any, pa_type: _ArrayXDExtensionType) -> pa.Array: """Convert to PyArrow ListArray. Args: data (Any): Sequence, iterable, np.ndarray or pd.Series. pa_type (_ArrayXDExtensionType): Any of the ArrayNDExtensionType. Returns: pyarrow.Array """ if contains_any_np_array(data): return any_np_array_to_pyarrow_listarray(data, type=pa_type.value_type) else: return pa.array(data, pa_type.storage_dtype) def _visit(feature: FeatureType, func: Callable[[FeatureType], Optional[FeatureType]]) -> FeatureType: """Visit a (possibly nested) feature. Args: feature (FeatureType): the feature type to be checked Returns: visited feature (FeatureType) """ if isinstance(feature, dict): out = func({k: _visit(f, func) for k, f in feature.items()}) elif isinstance(feature, (list, tuple)): out = func([_visit(feature[0], func)]) elif isinstance(feature, Sequence): out = func(Sequence(_visit(feature.feature, func), length=feature.length)) else: out = func(feature) return feature if out is None else out def require_decoding(feature: FeatureType, ignore_decode_attribute: bool = False) -> bool: """Check if a (possibly nested) feature requires decoding. Args: feature (FeatureType): the feature type to be checked ignore_decode_attribute (:obj:`bool`, default ``False``): Whether to ignore the current value of the `decode` attribute of the decodable feature types. Returns: :obj:`bool` """ if isinstance(feature, dict): return any(require_decoding(f) for f in feature.values()) elif isinstance(feature, (list, tuple)): return require_decoding(feature[0]) elif isinstance(feature, Sequence): return require_decoding(feature.feature) else: return hasattr(feature, "decode_example") and (feature.decode if not ignore_decode_attribute else True) def require_storage_cast(feature: FeatureType) -> bool: """Check if a (possibly nested) feature requires storage casting. Args: feature (FeatureType): the feature type to be checked Returns: :obj:`bool` """ if isinstance(feature, dict): return any(require_storage_cast(f) for f in feature.values()) elif isinstance(feature, (list, tuple)): return require_storage_cast(feature[0]) elif isinstance(feature, Sequence): return require_storage_cast(feature.feature) else: return hasattr(feature, "cast_storage") def require_storage_embed(feature: FeatureType) -> bool: """Check if a (possibly nested) feature requires embedding data into storage. Args: feature (FeatureType): the feature type to be checked Returns: :obj:`bool` """ if isinstance(feature, dict): return any(require_storage_cast(f) for f in feature.values()) elif isinstance(feature, (list, tuple)): return require_storage_cast(feature[0]) elif isinstance(feature, Sequence): return require_storage_cast(feature.feature) else: return hasattr(feature, "embed_storage") def keep_features_dicts_synced(func): """ Wrapper to keep the secondary dictionary, which tracks whether keys are decodable, of the :class:`datasets.Features` object in sync with the main dictionary. """ @wraps(func) def wrapper(*args, **kwargs): if args: self: "Features" = args[0] args = args[1:] else: self: "Features" = kwargs.pop("self") out = func(self, *args, **kwargs) assert hasattr(self, "_column_requires_decoding") self._column_requires_decoding = {col: require_decoding(feature) for col, feature in self.items()} return out wrapper._decorator_name_ = "_keep_dicts_synced" return wrapper class Features(dict): """A special dictionary that defines the internal structure of a dataset. Instantiated with a dictionary of type `dict[str, FieldType]`, where keys are the desired column names, and values are the type of that column. `FieldType` can be one of the following: - a [`~datasets.Value`] feature specifies a single typed value, e.g. `int64` or `string`. - a [`~datasets.ClassLabel`] feature specifies a field with a predefined set of classes which can have labels associated to them and will be stored as integers in the dataset. - a python `dict` which specifies that the field is a nested field containing a mapping of sub-fields to sub-fields features. It's possible to have nested fields of nested fields in an arbitrary manner. - a python `list` or a [`~datasets.Sequence`] specifies that the field contains a list of objects. The python `list` or [`~datasets.Sequence`] should be provided with a single sub-feature as an example of the feature type hosted in this list. <Tip> A [`~datasets.Sequence`] with a internal dictionary feature will be automatically converted into a dictionary of lists. This behavior is implemented to have a compatilbity layer with the TensorFlow Datasets library but may be un-wanted in some cases. If you don't want this behavior, you can use a python `list` instead of the [`~datasets.Sequence`]. </Tip> - a [`Array2D`], [`Array3D`], [`Array4D`] or [`Array5D`] feature for multidimensional arrays. - an [`Audio`] feature to store the absolute path to an audio file or a dictionary with the relative path to an audio file ("path" key) and its bytes content ("bytes" key). This feature extracts the audio data. - an [`Image`] feature to store the absolute path to an image file, an `np.ndarray` object, a `PIL.Image.Image` object or a dictionary with the relative path to an image file ("path" key) and its bytes content ("bytes" key). This feature extracts the image data. - [`~datasets.Translation`] and [`~datasets.TranslationVariableLanguages`], the two features specific to Machine Translation. """ def __init__(*args, **kwargs): # self not in the signature to allow passing self as a kwarg if not args: raise TypeError("descriptor '__init__' of 'Features' object needs an argument") self, *args = args super(Features, self).__init__(*args, **kwargs) self._column_requires_decoding: Dict[str, bool] = { col: require_decoding(feature) for col, feature in self.items() } __setitem__ = keep_features_dicts_synced(dict.__setitem__) __delitem__ = keep_features_dicts_synced(dict.__delitem__) update = keep_features_dicts_synced(dict.update) setdefault = keep_features_dicts_synced(dict.setdefault) pop = keep_features_dicts_synced(dict.pop) popitem = keep_features_dicts_synced(dict.popitem) clear = keep_features_dicts_synced(dict.clear) def __reduce__(self): return Features, (dict(self),) @property def type(self): """ Features field types. Returns: :obj:`pyarrow.DataType` """ return get_nested_type(self) @property def arrow_schema(self): """ Features schema. Returns: :obj:`pyarrow.Schema` """ hf_metadata = {"info": {"features": self.to_dict()}} return pa.schema(self.type).with_metadata({"huggingface": json.dumps(hf_metadata)}) @classmethod def from_arrow_schema(cls, pa_schema: pa.Schema) -> "Features": """ Construct [`Features`] from Arrow Schema. It also checks the schema metadata for Hugging Face Datasets features. Non-nullable fields are not supported and set to nullable. Args: pa_schema (`pyarrow.Schema`): Arrow Schema. Returns: [`Features`] """ # try to load features from the arrow schema metadata if pa_schema.metadata is not None and "huggingface".encode("utf-8") in pa_schema.metadata: metadata = json.loads(pa_schema.metadata["huggingface".encode("utf-8")].decode()) if "info" in metadata and "features" in metadata["info"] and metadata["info"]["features"] is not None: return Features.from_dict(metadata["info"]["features"]) obj = {field.name: generate_from_arrow_type(field.type) for field in pa_schema} return cls(**obj) @classmethod def from_dict(cls, dic) -> "Features": """ Construct [`Features`] from dict. Regenerate the nested feature object from a deserialized dict. We use the `_type` key to infer the dataclass name of the feature `FieldType`. It allows for a convenient constructor syntax to define features from deserialized JSON dictionaries. This function is used in particular when deserializing a [`DatasetInfo`] that was dumped to a JSON object. This acts as an analogue to [`Features.from_arrow_schema`] and handles the recursive field-by-field instantiation, but doesn't require any mapping to/from pyarrow, except for the fact that it takes advantage of the mapping of pyarrow primitive dtypes that [`Value`] automatically performs. Args: dic (`dict[str, Any]`): Python dictionary. Returns: `Features` Example:: >>> Features.from_dict({'_type': {'dtype': 'string', 'id': None, '_type': 'Value'}}) {'_type': Value(dtype='string', id=None)} """ obj = generate_from_dict(dic) return cls(**obj) def to_dict(self): return asdict(self) def _to_yaml_list(self) -> list: # we compute the YAML list from the dict representation that is used for JSON dump yaml_data = self.to_dict() def simplify(feature: dict) -> dict: if not isinstance(feature, dict): raise TypeError(f"Expected a dict but got a {type(feature)}: {feature}") # # sequence: -> sequence: int32 # dtype: int32 -> # if isinstance(feature.get("sequence"), dict) and list(feature["sequence"]) == ["dtype"]: feature["sequence"] = feature["sequence"]["dtype"] # # sequence: -> sequence: # struct: -> - name: foo # - name: foo -> dtype: int32 # dtype: int32 -> # if isinstance(feature.get("sequence"), dict) and list(feature["sequence"]) == ["struct"]: feature["sequence"] = feature["sequence"]["struct"] # # list: -> list: int32 # dtype: int32 -> # if isinstance(feature.get("list"), dict) and list(feature["list"]) == ["dtype"]: feature["list"] = feature["list"]["dtype"] # # list: -> list: # struct: -> - name: foo # - name: foo -> dtype: int32 # dtype: int32 -> # if isinstance(feature.get("list"), dict) and list(feature["list"]) == ["struct"]: feature["list"] = feature["list"]["struct"] # # class_label: -> class_label: # names: -> names: # - negative -> '0': negative # - positive -> '1': positive # if isinstance(feature.get("class_label"), dict) and isinstance(feature["class_label"].get("names"), list): # server-side requirement: keys must be strings feature["class_label"]["names"] = { str(label_id): label_name for label_id, label_name in enumerate(feature["class_label"]["names"]) } return feature def to_yaml_inner(obj: Union[dict, list]) -> dict: if isinstance(obj, dict): _type = obj.pop("_type", None) if _type == "Sequence": _feature = obj.pop("feature") return simplify({"sequence": to_yaml_inner(_feature), **obj}) elif _type == "Value": return obj elif _type and not obj: return {"dtype": camelcase_to_snakecase(_type)} elif _type: return {"dtype": simplify({camelcase_to_snakecase(_type): obj})} else: return {"struct": [{"name": name, **to_yaml_inner(_feature)} for name, _feature in obj.items()]} elif isinstance(obj, list): return simplify({"list": simplify(to_yaml_inner(obj[0]))}) else: raise TypeError(f"Expected a dict or a list but got {type(obj)}: {obj}") return to_yaml_inner(yaml_data)["struct"] @classmethod def _from_yaml_list(cls, yaml_data: list) -> "Features": yaml_data = copy.deepcopy(yaml_data) # we convert the list obtained from YAML data into the dict representation that is used for JSON dump def unsimplify(feature: dict) -> dict: if not isinstance(feature, dict): raise TypeError(f"Expected a dict but got a {type(feature)}: {feature}") # # sequence: int32 -> sequence: # -> dtype: int32 # if isinstance(feature.get("sequence"), str): feature["sequence"] = {"dtype": feature["sequence"]} # # list: int32 -> list: # -> dtype: int32 # if isinstance(feature.get("list"), str): feature["list"] = {"dtype": feature["list"]} # # class_label: -> class_label: # names: -> names: # '0': negative -> - negative # '1': positive -> - positive # if isinstance(feature.get("class_label"), dict) and isinstance(feature["class_label"].get("names"), dict): label_ids = sorted(feature["class_label"]["names"], key=int) if label_ids and [int(label_id) for label_id in label_ids] != list(range(int(label_ids[-1]) + 1)): raise ValueError( f"ClassLabel expected a value for all label ids [0:{int(label_ids[-1]) + 1}] but some ids are missing." ) feature["class_label"]["names"] = [feature["class_label"]["names"][label_id] for label_id in label_ids] return feature def from_yaml_inner(obj: Union[dict, list]) -> Union[dict, list]: if isinstance(obj, dict): if not obj: return {} _type = next(iter(obj)) if _type == "sequence": _feature = unsimplify(obj).pop(_type) return {"feature": from_yaml_inner(_feature), **obj, "_type": "Sequence"} if _type == "list": return [from_yaml_inner(unsimplify(obj)[_type])] if _type == "struct": return from_yaml_inner(obj["struct"]) elif _type == "dtype": if isinstance(obj["dtype"], str): # e.g. int32, float64, string, audio, image try: Value(obj["dtype"]) return {**obj, "_type": "Value"} except ValueError: # for audio and image that are Audio and Image types, not Value return {"_type": snakecase_to_camelcase(obj["dtype"])} else: return from_yaml_inner(obj["dtype"]) else: return {"_type": snakecase_to_camelcase(_type), **unsimplify(obj)[_type]} elif isinstance(obj, list): names = [_feature.pop("name") for _feature in obj] return {name: from_yaml_inner(_feature) for name, _feature in zip(names, obj)} else: raise TypeError(f"Expected a dict or a list but got {type(obj)}: {obj}") return cls.from_dict(from_yaml_inner(yaml_data)) def encode_example(self, example): """ Encode example into a format for Arrow. Args: example (`dict[str, Any]`): Data in a Dataset row. Returns: `dict[str, Any]` """ example = cast_to_python_objects(example) return encode_nested_example(self, example) def encode_column(self, column, column_name: str): """ Encode column into a format for Arrow. Args: column (`list[Any]`): Data in a Dataset column. column_name (`str`): Dataset column name. Returns: `list[Any]` """ column = cast_to_python_objects(column) return [encode_nested_example(self[column_name], obj) for obj in column] def encode_batch(self, batch): """ Encode batch into a format for Arrow. Args: batch (`dict[str, list[Any]]`): Data in a Dataset batch. Returns: `dict[str, list[Any]]` """ encoded_batch = {} if set(batch) != set(self): raise ValueError(f"Column mismatch between batch {set(batch)} and features {set(self)}") for key, column in batch.items(): column = cast_to_python_objects(column) encoded_batch[key] = [encode_nested_example(self[key], obj) for obj in column] return encoded_batch def decode_example(self, example: dict, token_per_repo_id: Optional[Dict[str, Union[str, bool, None]]] = None): """Decode example with custom feature decoding. Args: example (`dict[str, Any]`): Dataset row data. token_per_repo_id (`dict`, *optional*): To access and decode audio or image files from private repositories on the Hub, you can pass a dictionary `repo_id (str) -> token (bool or str)`. Returns: `dict[str, Any]` """ return { column_name: decode_nested_example(feature, value, token_per_repo_id=token_per_repo_id) if self._column_requires_decoding[column_name] else value for column_name, (feature, value) in zip_dict( {key: value for key, value in self.items() if key in example}, example ) } def decode_column(self, column: list, column_name: str): """Decode column with custom feature decoding. Args: column (`list[Any]`): Dataset column data. column_name (`str`): Dataset column name. Returns: `list[Any]` """ return ( [decode_nested_example(self[column_name], value) if value is not None else None for value in column] if self._column_requires_decoding[column_name] else column ) def decode_batch(self, batch: dict, token_per_repo_id: Optional[Dict[str, Union[str, bool, None]]] = None): """Decode batch with custom feature decoding. Args: batch (`dict[str, list[Any]]`): Dataset batch data. token_per_repo_id (`dict`, *optional*): To access and decode audio or image files from private repositories on the Hub, you can pass a dictionary repo_id (str) -> token (bool or str) Returns: `dict[str, list[Any]]` """ decoded_batch = {} for column_name, column in batch.items(): decoded_batch[column_name] = ( [ decode_nested_example(self[column_name], value, token_per_repo_id=token_per_repo_id) if value is not None else None for value in column ] if self._column_requires_decoding[column_name] else column ) return decoded_batch def copy(self) -> "Features": """ Make a deep copy of [`Features`]. Returns: [`Features`] Example: ```py >>> from datasets import load_dataset >>> ds = load_dataset("rotten_tomatoes", split="train") >>> copy_of_features = ds.features.copy() >>> copy_of_features {'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None), 'text': Value(dtype='string', id=None)} ``` """ return copy.deepcopy(self) def reorder_fields_as(self, other: "Features") -> "Features": """ Reorder Features fields to match the field order of other [`Features`]. The order of the fields is important since it matters for the underlying arrow data. Re-ordering the fields allows to make the underlying arrow data type match. Args: other ([`Features`]): The other [`Features`] to align with. Returns: [`Features`] Example:: >>> from datasets import Features, Sequence, Value >>> # let's say we have to features with a different order of nested fields (for a and b for example) >>> f1 = Features({"root": Sequence({"a": Value("string"), "b": Value("string")})}) >>> f2 = Features({"root": {"b": Sequence(Value("string")), "a": Sequence(Value("string"))}}) >>> assert f1.type != f2.type >>> # re-ordering keeps the base structure (here Sequence is defined at the root level), but make the fields order match >>> f1.reorder_fields_as(f2) {'root': Sequence(feature={'b': Value(dtype='string', id=None), 'a': Value(dtype='string', id=None)}, length=-1, id=None)} >>> assert f1.reorder_fields_as(f2).type == f2.type """ def recursive_reorder(source, target, stack=""): stack_position = " at " + stack[1:] if stack else "" if isinstance(target, Sequence): target = target.feature if isinstance(target, dict): target = {k: [v] for k, v in target.items()} else: target = [target] if isinstance(source, Sequence): source, id_, length = source.feature, source.id, source.length if isinstance(source, dict): source = {k: [v] for k, v in source.items()} reordered = recursive_reorder(source, target, stack) return Sequence({k: v[0] for k, v in reordered.items()}, id=id_, length=length) else: source = [source] reordered = recursive_reorder(source, target, stack) return Sequence(reordered[0], id=id_, length=length) elif isinstance(source, dict): if not isinstance(target, dict): raise ValueError(f"Type mismatch: between {source} and {target}" + stack_position) if sorted(source) != sorted(target): message = ( f"Keys mismatch: between {source} (source) and {target} (target).\n" f"{source.keys()-target.keys()} are missing from target " f"and {target.keys()-source.keys()} are missing from source" + stack_position ) raise ValueError(message) return {key: recursive_reorder(source[key], target[key], stack + f".{key}") for key in target} elif isinstance(source, list): if not isinstance(target, list): raise ValueError(f"Type mismatch: between {source} and {target}" + stack_position) if len(source) != len(target): raise ValueError(f"Length mismatch: between {source} and {target}" + stack_position) return [recursive_reorder(source[i], target[i], stack + ".<list>") for i in range(len(target))] else: return source return Features(recursive_reorder(self, other)) def flatten(self, max_depth=16) -> "Features": """Flatten the features. Every dictionary column is removed and is replaced by all the subfields it contains. The new fields are named by concatenating the name of the original column and the subfield name like this: `<original>.<subfield>`. If a column contains nested dictionaries, then all the lower-level subfields names are also concatenated to form new columns: `<original>.<subfield>.<subsubfield>`, etc. Returns: [`Features`]: The flattened features. Example: ```py >>> from datasets import load_dataset >>> ds = load_dataset("squad", split="train") >>> ds.features.flatten() {'answers.answer_start': Sequence(feature=Value(dtype='int32', id=None), length=-1, id=None), 'answers.text': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'context': Value(dtype='string', id=None), 'id': Value(dtype='string', id=None), 'question': Value(dtype='string', id=None), 'title': Value(dtype='string', id=None)} ``` """ for depth in range(1, max_depth): no_change = True flattened = self.copy() for column_name, subfeature in self.items(): if isinstance(subfeature, dict): no_change = False flattened.update({f"{column_name}.{k}": v for k, v in subfeature.items()}) del flattened[column_name] elif isinstance(subfeature, Sequence) and isinstance(subfeature.feature, dict): no_change = False flattened.update( { f"{column_name}.{k}": Sequence(v) if not isinstance(v, dict) else [v] for k, v in subfeature.feature.items() } ) del flattened[column_name] elif hasattr(subfeature, "flatten") and subfeature.flatten() != subfeature: no_change = False flattened.update({f"{column_name}.{k}": v for k, v in subfeature.flatten().items()}) del flattened[column_name] self = flattened if no_change: break return self def _align_features(features_list: List[Features]) -> List[Features]: """Align dictionaries of features so that the keys that are found in multiple dictionaries share the same feature.""" name2feature = {} for features in features_list: for k, v in features.items(): if k not in name2feature or (isinstance(name2feature[k], Value) and name2feature[k].dtype == "null"): name2feature[k] = v return [Features({k: name2feature[k] for k in features.keys()}) for features in features_list] def _check_if_features_can_be_aligned(features_list: List[Features]): """Check if the dictionaries of features can be aligned. Two dictonaries of features can be aligned if the keys they share have the same type or some of them is of type `Value("null")`. """ name2feature = {} for features in features_list: for k, v in features.items(): if k not in name2feature or (isinstance(name2feature[k], Value) and name2feature[k].dtype == "null"): name2feature[k] = v for features in features_list: for k, v in features.items(): if not (isinstance(v, Value) and v.dtype == "null") and name2feature[k] != v: raise ValueError( f'The features can\'t be aligned because the key {k} of features {features} has unexpected type - {v} (expected either {name2feature[k]} or Value("null").' )
datasets-main
src/datasets/features/features.py
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class Translation: """`FeatureConnector` for translations with fixed languages per example. Here for compatiblity with tfds. Args: languages (`dict`): A dictionary for each example mapping string language codes to string translations. Example: ```python >>> # At construction time: >>> datasets.features.Translation(languages=['en', 'fr', 'de']) >>> # During data generation: >>> yield { ... 'en': 'the cat', ... 'fr': 'le chat', ... 'de': 'die katze' ... } ``` """ languages: List[str] id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "dict" pa_type: ClassVar[Any] = None _type: str = field(default="Translation", init=False, repr=False) def __call__(self): return pa.struct({lang: pa.string() for lang in sorted(self.languages)}) def flatten(self) -> Union["FeatureType", Dict[str, "FeatureType"]]: """Flatten the Translation feature into a dictionary.""" from .features import Value return {k: Value("string") for k in sorted(self.languages)} @dataclass class TranslationVariableLanguages: """`FeatureConnector` for translations with variable languages per example. Here for compatiblity with tfds. Args: languages (`dict`): A dictionary for each example mapping string language codes to one or more string translations. The languages present may vary from example to example. Returns: - `language` or `translation` (variable-length 1D `tf.Tensor` of `tf.string`): Language codes sorted in ascending order or plain text translations, sorted to align with language codes. Example: ```python >>> # At construction time: >>> datasets.features.TranslationVariableLanguages(languages=['en', 'fr', 'de']) >>> # During data generation: >>> yield { ... 'en': 'the cat', ... 'fr': ['le chat', 'la chatte,'] ... 'de': 'die katze' ... } >>> # Tensor returned : >>> { ... 'language': ['en', 'de', 'fr', 'fr'], ... 'translation': ['the cat', 'die katze', 'la chatte', 'le chat'], ... } ``` """ languages: Optional[List] = None num_languages: Optional[int] = None id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "dict" pa_type: ClassVar[Any] = None _type: str = field(default="TranslationVariableLanguages", init=False, repr=False) def __post_init__(self): self.languages = sorted(set(self.languages)) if self.languages else None self.num_languages = len(self.languages) if self.languages else None def __call__(self): return pa.struct({"language": pa.list_(pa.string()), "translation": pa.list_(pa.string())}) def encode_example(self, translation_dict): lang_set = set(self.languages) if self.languages and set(translation_dict) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(translation_dict) - lang_set))}) are not in valid set ({", ".join(lang_set)}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. translation_tuples = [] for lang, text in translation_dict.items(): if isinstance(text, str): translation_tuples.append((lang, text)) else: translation_tuples.extend([(lang, el) for el in text]) # Ensure translations are in ascending order by language code. languages, translations = zip(*sorted(translation_tuples)) return {"language": languages, "translation": translations} def flatten(self) -> Union["FeatureType", Dict[str, "FeatureType"]]: """Flatten the TranslationVariableLanguages feature into a dictionary.""" from .features import Sequence, Value return { "language": Sequence(Value("string")), "translation": Sequence(Value("string")), }
datasets-main
src/datasets/features/translation.py
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.download_config import DownloadConfig from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType @dataclass class Audio: """Audio [`Feature`] to extract audio data from an audio file. Input: The Audio feature accepts as input: - A `str`: Absolute path to the audio file (i.e. random access is allowed). - A `dict` with the keys: - `path`: String with relative path of the audio file to the archive file. - `bytes`: Bytes content of the audio file. This is useful for archived files with sequential access. - A `dict` with the keys: - `path`: String with relative path of the audio file to the archive file. - `array`: Array containing the audio sample - `sampling_rate`: Integer corresponding to the sampling rate of the audio sample. This is useful for archived files with sequential access. Args: sampling_rate (`int`, *optional*): Target sampling rate. If `None`, the native sampling rate is used. mono (`bool`, defaults to `True`): Whether to convert the audio signal to mono by averaging samples across channels. decode (`bool`, defaults to `True`): Whether to decode the audio data. If `False`, returns the underlying dictionary in the format `{"path": audio_path, "bytes": audio_bytes}`. Example: ```py >>> from datasets import load_dataset, Audio >>> ds = load_dataset("PolyAI/minds14", name="en-US", split="train") >>> ds = ds.cast_column("audio", Audio(sampling_rate=16000)) >>> ds[0]["audio"] {'array': array([ 2.3443763e-05, 2.1729663e-04, 2.2145823e-04, ..., 3.8356509e-05, -7.3497440e-06, -2.1754686e-05], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav', 'sampling_rate': 16000} ``` """ sampling_rate: Optional[int] = None mono: bool = True decode: bool = True id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "dict" pa_type: ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()}) _type: str = field(default="Audio", init=False, repr=False) def __call__(self): return self.pa_type def encode_example(self, value: Union[str, bytes, dict]) -> dict: """Encode example into a format for Arrow. Args: value (`str` or `dict`): Data passed as input to Audio feature. Returns: `dict` """ try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'.") from err if isinstance(value, str): return {"bytes": None, "path": value} elif isinstance(value, bytes): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes buffer = BytesIO() sf.write(buffer, value["array"], value["sampling_rate"], format="wav") return {"bytes": buffer.getvalue(), "path": None} elif value.get("path") is not None and os.path.isfile(value["path"]): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm"): # "PCM" only has raw audio bytes if value.get("sampling_rate") is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object") if value.get("bytes"): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) bytes_value = np.frombuffer(value["bytes"], dtype=np.int16).astype(np.float32) / 32767 else: bytes_value = np.memmap(value["path"], dtype="h", mode="r").astype(np.float32) / 32767 buffer = BytesIO(bytes()) sf.write(buffer, bytes_value, value["sampling_rate"], format="wav") return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path")} elif value.get("bytes") is not None or value.get("path") is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes"), "path": value.get("path")} else: raise ValueError( f"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def decode_example( self, value: dict, token_per_repo_id: Optional[Dict[str, Union[str, bool, None]]] = None ) -> dict: """Decode example audio file into audio data. Args: value (`dict`): A dictionary with keys: - `path`: String with relative audio file path. - `bytes`: Bytes of the audio file. token_per_repo_id (`dict`, *optional*): To access and decode audio files from private repositories on the Hub, you can pass a dictionary repo_id (`str`) -> token (`bool` or `str`) Returns: `dict` """ if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead.") path, file = (value["path"], BytesIO(value["bytes"])) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}.") try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'.") from err audio_format = xsplitext(path)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) if file is None: token_per_repo_id = token_per_repo_id or {} source_url = path.split("::")[-1] pattern = ( config.HUB_DATASETS_URL if source_url.startswith(config.HF_ENDPOINT) else config.HUB_DATASETS_HFFS_URL ) try: repo_id = string_to_dict(source_url, pattern)["repo_id"] token = token_per_repo_id[repo_id] except (ValueError, KeyError): token = None download_config = DownloadConfig(token=token) with xopen(path, "rb", download_config=download_config) as f: array, sampling_rate = sf.read(f) else: array, sampling_rate = sf.read(file) array = array.T if self.mono: array = librosa.to_mono(array) if self.sampling_rate and self.sampling_rate != sampling_rate: array = librosa.resample(array, orig_sr=sampling_rate, target_sr=self.sampling_rate) sampling_rate = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def flatten(self) -> Union["FeatureType", Dict[str, "FeatureType"]]: """If in the decodable state, raise an error, otherwise flatten the feature into a dictionary.""" from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature.") return { "bytes": Value("binary"), "path": Value("string"), } def cast_storage(self, storage: Union[pa.StringArray, pa.StructArray]) -> pa.StructArray: """Cast an Arrow array to the Audio arrow storage type. The Arrow types that can be converted to the Audio pyarrow storage type are: - `pa.string()` - it must contain the "path" data - `pa.binary()` - it must contain the audio bytes - `pa.struct({"bytes": pa.binary()})` - `pa.struct({"path": pa.string()})` - `pa.struct({"bytes": pa.binary(), "path": pa.string()})` - order doesn't matter Args: storage (`Union[pa.StringArray, pa.StructArray]`): PyArrow array to cast. Returns: `pa.StructArray`: Array in the Audio arrow storage type, that is `pa.struct({"bytes": pa.binary(), "path": pa.string()})` """ if pa.types.is_string(storage.type): bytes_array = pa.array([None] * len(storage), type=pa.binary()) storage = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null()) elif pa.types.is_binary(storage.type): path_array = pa.array([None] * len(storage), type=pa.string()) storage = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices("array"): storage = pa.array([Audio().encode_example(x) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index("bytes") >= 0: bytes_array = storage.field("bytes") else: bytes_array = pa.array([None] * len(storage), type=pa.binary()) if storage.type.get_field_index("path") >= 0: path_array = storage.field("path") else: path_array = pa.array([None] * len(storage), type=pa.string()) storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null()) return array_cast(storage, self.pa_type) def embed_storage(self, storage: pa.StructArray) -> pa.StructArray: """Embed audio files into the Arrow array. Args: storage (`pa.StructArray`): PyArrow array to embed. Returns: `pa.StructArray`: Array in the Audio arrow storage type, that is `pa.struct({"bytes": pa.binary(), "path": pa.string()})`. """ @no_op_if_value_is_null def path_to_bytes(path): with xopen(path, "rb") as f: bytes_ = f.read() return bytes_ bytes_array = pa.array( [ (path_to_bytes(x["path"]) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ], type=pa.binary(), ) path_array = pa.array( [os.path.basename(path) if path is not None else None for path in storage.field("path").to_pylist()], type=pa.string(), ) storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null()) return array_cast(storage, self.pa_type)
datasets-main
src/datasets/features/audio.py
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.download_config import DownloadConfig from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _IMAGE_COMPRESSION_FORMATS: Optional[List[str]] = None _NATIVE_BYTEORDER = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _VALID_IMAGE_ARRAY_DTPYES = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class Image: """Image [`Feature`] to read image data from an image file. Input: The Image feature accepts as input: - A `str`: Absolute path to the image file (i.e. random access is allowed). - A `dict` with the keys: - `path`: String with relative path of the image file to the archive file. - `bytes`: Bytes of the image file. This is useful for archived files with sequential access. - An `np.ndarray`: NumPy array representing an image. - A `PIL.Image.Image`: PIL image object. Args: decode (`bool`, defaults to `True`): Whether to decode the image data. If `False`, returns the underlying dictionary in the format `{"path": image_path, "bytes": image_bytes}`. Examples: ```py >>> from datasets import load_dataset, Image >>> ds = load_dataset("beans", split="train") >>> ds.features["image"] Image(decode=True, id=None) >>> ds[0]["image"] <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x500 at 0x15E52E7F0> >>> ds = ds.cast_column('image', Image(decode=False)) {'bytes': None, 'path': '/root/.cache/huggingface/datasets/downloads/extracted/b0a21163f78769a2cf11f58dfc767fb458fc7cea5c05dccc0144a2c0f0bc1292/train/healthy/healthy_train.85.jpg'} ``` """ decode: bool = True id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "PIL.Image.Image" pa_type: ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()}) _type: str = field(default="Image", init=False, repr=False) def __call__(self): return self.pa_type def encode_example(self, value: Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"]) -> dict: """Encode example into a format for Arrow. Args: value (`str`, `np.ndarray`, `PIL.Image.Image` or `dict`): Data passed as input to Image feature. Returns: `dict` with "path" and "bytes" fields """ if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'.") if isinstance(value, list): value = np.array(value) if isinstance(value, str): return {"path": value, "bytes": None} elif isinstance(value, bytes): return {"path": None, "bytes": value} elif isinstance(value, np.ndarray): # convert the image array to PNG/TIFF bytes return encode_np_array(value) elif isinstance(value, PIL.Image.Image): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(value) elif value.get("path") is not None and os.path.isfile(value["path"]): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path")} elif value.get("bytes") is not None or value.get("path") is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes"), "path": value.get("path")} else: raise ValueError( f"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def decode_example(self, value: dict, token_per_repo_id=None) -> "PIL.Image.Image": """Decode example image file into image data. Args: value (`str` or `dict`): A string with the absolute image file path, a dictionary with keys: - `path`: String with absolute or relative image file path. - `bytes`: The bytes of the image file. token_per_repo_id (`dict`, *optional*): To access and decode image files from private repositories on the Hub, you can pass a dictionary repo_id (`str`) -> token (`bool` or `str`). Returns: `PIL.Image.Image` """ if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead.") if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'.") if token_per_repo_id is None: token_per_repo_id = {} path, bytes_ = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(f"An image should have one of 'path' or 'bytes' but both are None in {value}.") else: if is_local_path(path): image = PIL.Image.open(path) else: source_url = path.split("::")[-1] pattern = ( config.HUB_DATASETS_URL if source_url.startswith(config.HF_ENDPOINT) else config.HUB_DATASETS_HFFS_URL ) try: repo_id = string_to_dict(source_url, pattern)["repo_id"] token = token_per_repo_id.get(repo_id) except ValueError: token = None download_config = DownloadConfig(token=token) with xopen(path, "rb", download_config=download_config) as f: bytes_ = BytesIO(f.read()) image = PIL.Image.open(bytes_) else: image = PIL.Image.open(BytesIO(bytes_)) image.load() # to avoid "Too many open files" errors return image def flatten(self) -> Union["FeatureType", Dict[str, "FeatureType"]]: """If in the decodable state, return the feature itself, otherwise flatten the feature into a dictionary.""" from .features import Value return ( self if self.decode else { "bytes": Value("binary"), "path": Value("string"), } ) def cast_storage(self, storage: Union[pa.StringArray, pa.StructArray, pa.ListArray]) -> pa.StructArray: """Cast an Arrow array to the Image arrow storage type. The Arrow types that can be converted to the Image pyarrow storage type are: - `pa.string()` - it must contain the "path" data - `pa.binary()` - it must contain the image bytes - `pa.struct({"bytes": pa.binary()})` - `pa.struct({"path": pa.string()})` - `pa.struct({"bytes": pa.binary(), "path": pa.string()})` - order doesn't matter - `pa.list(*)` - it must contain the image array data Args: storage (`Union[pa.StringArray, pa.StructArray, pa.ListArray]`): PyArrow array to cast. Returns: `pa.StructArray`: Array in the Image arrow storage type, that is `pa.struct({"bytes": pa.binary(), "path": pa.string()})`. """ if pa.types.is_string(storage.type): bytes_array = pa.array([None] * len(storage), type=pa.binary()) storage = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null()) elif pa.types.is_binary(storage.type): path_array = pa.array([None] * len(storage), type=pa.string()) storage = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null()) elif pa.types.is_struct(storage.type): if storage.type.get_field_index("bytes") >= 0: bytes_array = storage.field("bytes") else: bytes_array = pa.array([None] * len(storage), type=pa.binary()) if storage.type.get_field_index("path") >= 0: path_array = storage.field("path") else: path_array = pa.array([None] * len(storage), type=pa.string()) storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null()) elif pa.types.is_list(storage.type): bytes_array = pa.array( [encode_np_array(np.array(arr))["bytes"] if arr is not None else None for arr in storage.to_pylist()], type=pa.binary(), ) path_array = pa.array([None] * len(storage), type=pa.string()) storage = pa.StructArray.from_arrays( [bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(storage, self.pa_type) def embed_storage(self, storage: pa.StructArray) -> pa.StructArray: """Embed image files into the Arrow array. Args: storage (`pa.StructArray`): PyArrow array to embed. Returns: `pa.StructArray`: Array in the Image arrow storage type, that is `pa.struct({"bytes": pa.binary(), "path": pa.string()})`. """ @no_op_if_value_is_null def path_to_bytes(path): with xopen(path, "rb") as f: bytes_ = f.read() return bytes_ bytes_array = pa.array( [ (path_to_bytes(x["path"]) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ], type=pa.binary(), ) path_array = pa.array( [os.path.basename(path) if path is not None else None for path in storage.field("path").to_pylist()], type=pa.string(), ) storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null()) return array_cast(storage, self.pa_type) def list_image_compression_formats() -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'.") global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() _IMAGE_COMPRESSION_FORMATS = list(set(PIL.Image.OPEN.keys()) & set(PIL.Image.SAVE.keys())) return _IMAGE_COMPRESSION_FORMATS def image_to_bytes(image: "PIL.Image.Image") -> bytes: """Convert a PIL Image object to bytes using native compression if possible, otherwise use PNG/TIFF compression.""" buffer = BytesIO() if image.format in list_image_compression_formats(): format = image.format else: format = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(buffer, format=format) return buffer.getvalue() def encode_pil_image(image: "PIL.Image.Image") -> dict: if hasattr(image, "filename") and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(image)} def encode_np_array(array: np.ndarray) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'.") dtype = array.dtype dtype_byteorder = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER dtype_kind = dtype.kind dtype_itemsize = dtype.itemsize dest_dtype = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: dest_dtype = np.dtype("|u1") if dtype_kind not in ["u", "i"]: raise TypeError( f"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays." ) if dtype is not dest_dtype: warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'") # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: dest_dtype = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: dest_dtype_str = dtype_byteorder + dtype_kind + str(dtype_itemsize) dest_dtype = np.dtype(dest_dtype_str) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'") break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}" ) image = PIL.Image.fromarray(array.astype(dest_dtype)) return {"path": None, "bytes": image_to_bytes(image)} def objects_to_list_of_image_dicts( objs: Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: """Encode a list of objects into a format suitable for creating an extension array of type `ImageExtensionType`.""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'.") if objs: _, obj = first_non_null_value(objs) if isinstance(obj, str): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(obj, np.ndarray): obj_to_image_dict_func = no_op_if_value_is_null(encode_np_array) return [obj_to_image_dict_func(obj) for obj in objs] elif isinstance(obj, PIL.Image.Image): obj_to_image_dict_func = no_op_if_value_is_null(encode_pil_image) return [obj_to_image_dict_func(obj) for obj in objs] else: return objs else: return objs
datasets-main
src/datasets/features/image.py
import inspect import re from hashlib import sha256 from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def _hash_python_lines(lines: List[str]) -> str: filtered_lines = [] for line in lines: line = re.sub(r"#.*", "", line) # remove comments if line: filtered_lines.append(line) full_str = "\n".join(filtered_lines) # Make a hash from all this code full_bytes = full_str.encode("utf-8") return sha256(full_bytes).hexdigest() # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions _EXTENSION_TO_MODULE = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), ".parquet": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _MODULE_SUPPORTS_METADATA = {"imagefolder", "audiofolder"} # Used to filter data files based on extensions given a module name _MODULE_TO_EXTENSIONS: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) for _module in _MODULE_TO_EXTENSIONS: _MODULE_TO_EXTENSIONS[_module].append(".zip")
datasets-main
src/datasets/packaged_modules/__init__.py
datasets-main
src/datasets/packaged_modules/folder_based_builder/__init__.py
import collections import itertools import os from dataclasses import dataclass from typing import List, Optional, Tuple, Type import pandas as pd import pyarrow as pa import pyarrow.json as paj import datasets from datasets.features.features import FeatureType from datasets.tasks.base import TaskTemplate logger = datasets.utils.logging.get_logger(__name__) def count_path_segments(path): return path.replace("\\", "/").count("/") @dataclass class FolderBasedBuilderConfig(datasets.BuilderConfig): """BuilderConfig for AutoFolder.""" features: Optional[datasets.Features] = None drop_labels: bool = None drop_metadata: bool = None class FolderBasedBuilder(datasets.GeneratorBasedBuilder): """ Base class for generic data loaders for vision and image data. Abstract class attributes to be overridden by a child class: BASE_FEATURE: feature object to decode data (i.e. datasets.Image, datasets.Audio, ...) BASE_COLUMN_NAME: string key name of a base feature (i.e. "image", "audio", ...) BUILDER_CONFIG_CLASS: builder config inherited from `folder_based_builder.FolderBasedBuilderConfig` EXTENSIONS: list of allowed extensions (only files with these extensions and METADATA_FILENAME files will be included in a dataset) CLASSIFICATION_TASK: classification task to use if labels are obtained from the folder structure """ BASE_FEATURE: Type[FeatureType] BASE_COLUMN_NAME: str BUILDER_CONFIG_CLASS: FolderBasedBuilderConfig EXTENSIONS: List[str] CLASSIFICATION_TASK: TaskTemplate METADATA_FILENAMES: List[str] = ["metadata.csv", "metadata.jsonl"] def _info(self): return datasets.DatasetInfo(features=self.config.features) def _split_generators(self, dl_manager): if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") # Do an early pass if: # * `drop_labels` is None (default) or False, to infer the class labels # * `drop_metadata` is None (default) or False, to find the metadata files do_analyze = not self.config.drop_labels or not self.config.drop_metadata labels, path_depths = set(), set() metadata_files = collections.defaultdict(set) def analyze(files_or_archives, downloaded_files_or_dirs, split): if len(downloaded_files_or_dirs) == 0: return # The files are separated from the archives at this point, so check the first sample # to see if it's a file or a directory and iterate accordingly if os.path.isfile(downloaded_files_or_dirs[0]): original_files, downloaded_files = files_or_archives, downloaded_files_or_dirs for original_file, downloaded_file in zip(original_files, downloaded_files): original_file, downloaded_file = str(original_file), str(downloaded_file) _, original_file_ext = os.path.splitext(original_file) if original_file_ext.lower() in self.EXTENSIONS: if not self.config.drop_labels: labels.add(os.path.basename(os.path.dirname(original_file))) path_depths.add(count_path_segments(original_file)) elif os.path.basename(original_file) in self.METADATA_FILENAMES: metadata_files[split].add((original_file, downloaded_file)) else: original_file_name = os.path.basename(original_file) logger.debug( f"The file '{original_file_name}' was ignored: it is not an image, and is not {self.METADATA_FILENAMES} either." ) else: archives, downloaded_dirs = files_or_archives, downloaded_files_or_dirs for archive, downloaded_dir in zip(archives, downloaded_dirs): archive, downloaded_dir = str(archive), str(downloaded_dir) for downloaded_dir_file in dl_manager.iter_files(downloaded_dir): _, downloaded_dir_file_ext = os.path.splitext(downloaded_dir_file) if downloaded_dir_file_ext in self.EXTENSIONS: if not self.config.drop_labels: labels.add(os.path.basename(os.path.dirname(downloaded_dir_file))) path_depths.add(count_path_segments(downloaded_dir_file)) elif os.path.basename(downloaded_dir_file) in self.METADATA_FILENAMES: metadata_files[split].add((None, downloaded_dir_file)) else: archive_file_name = os.path.basename(archive) original_file_name = os.path.basename(downloaded_dir_file) logger.debug( f"The file '{original_file_name}' from the archive '{archive_file_name}' was ignored: it is not an {self.BASE_COLUMN_NAME}, and is not {self.METADATA_FILENAMES} either." ) data_files = self.config.data_files splits = [] for split_name, files in data_files.items(): if isinstance(files, str): files = [files] files, archives = self._split_files_and_archives(files) downloaded_files = dl_manager.download(files) downloaded_dirs = dl_manager.download_and_extract(archives) if do_analyze: # drop_metadata is None or False, drop_labels is None or False logger.info(f"Searching for labels and/or metadata files in {split_name} data files...") analyze(files, downloaded_files, split_name) analyze(archives, downloaded_dirs, split_name) if metadata_files: # add metadata if `metadata_files` are found and `drop_metadata` is None (default) or False add_metadata = not self.config.drop_metadata # if `metadata_files` are found, add labels only if # `drop_labels` is set up to False explicitly (not-default behavior) add_labels = self.config.drop_labels is False else: # if `metadata_files` are not found, don't add metadata add_metadata = False # if `metadata_files` are not found and `drop_labels` is None (default) - # add labels if files are on the same level in directory hierarchy and there is more than one label add_labels = ( (len(labels) > 1 and len(path_depths) == 1) if self.config.drop_labels is None else not self.config.drop_labels ) if add_labels: logger.info("Adding the labels inferred from data directories to the dataset's features...") if add_metadata: logger.info("Adding metadata to the dataset...") else: add_labels, add_metadata, metadata_files = False, False, {} splits.append( datasets.SplitGenerator( name=split_name, gen_kwargs={ "files": list(zip(files, downloaded_files)) + [(None, dl_manager.iter_files(downloaded_dir)) for downloaded_dir in downloaded_dirs], "metadata_files": metadata_files, "split_name": split_name, "add_labels": add_labels, "add_metadata": add_metadata, }, ) ) if add_metadata: # Verify that: # * all metadata files have the same set of features # * the `file_name` key is one of the metadata keys and is of type string features_per_metadata_file: List[Tuple[str, datasets.Features]] = [] # Check that all metadata files share the same format metadata_ext = { os.path.splitext(downloaded_metadata_file)[1][1:] for _, downloaded_metadata_file in itertools.chain.from_iterable(metadata_files.values()) } if len(metadata_ext) > 1: raise ValueError(f"Found metadata files with different extensions: {list(metadata_ext)}") metadata_ext = metadata_ext.pop() for _, downloaded_metadata_file in itertools.chain.from_iterable(metadata_files.values()): pa_metadata_table = self._read_metadata(downloaded_metadata_file) features_per_metadata_file.append( (downloaded_metadata_file, datasets.Features.from_arrow_schema(pa_metadata_table.schema)) ) for downloaded_metadata_file, metadata_features in features_per_metadata_file: if metadata_features != features_per_metadata_file[0][1]: raise ValueError( f"Metadata files {downloaded_metadata_file} and {features_per_metadata_file[0][0]} have different features: {features_per_metadata_file[0]} != {metadata_features}" ) metadata_features = features_per_metadata_file[0][1] if "file_name" not in metadata_features: raise ValueError("`file_name` must be present as dictionary key in metadata files") if metadata_features["file_name"] != datasets.Value("string"): raise ValueError("`file_name` key must be a string") del metadata_features["file_name"] else: metadata_features = None # Normally, we would do this in _info, but we need to know the labels and/or metadata # before building the features if self.config.features is None: if add_labels: self.info.features = datasets.Features( { self.BASE_COLUMN_NAME: self.BASE_FEATURE(), "label": datasets.ClassLabel(names=sorted(labels)), } ) self.info.task_templates = [self.CLASSIFICATION_TASK.align_with_features(self.info.features)] else: self.info.features = datasets.Features({self.BASE_COLUMN_NAME: self.BASE_FEATURE()}) if add_metadata: # Warn if there are duplicated keys in metadata compared to the existing features # (`BASE_COLUMN_NAME`, optionally "label") duplicated_keys = set(self.info.features) & set(metadata_features) if duplicated_keys: logger.warning( f"Ignoring metadata columns {list(duplicated_keys)} as they are already present in " f"the features dictionary." ) # skip metadata duplicated keys self.info.features.update( { feature: metadata_features[feature] for feature in metadata_features if feature not in duplicated_keys } ) return splits def _split_files_and_archives(self, data_files): files, archives = [], [] for data_file in data_files: _, data_file_ext = os.path.splitext(data_file) if data_file_ext.lower() in self.EXTENSIONS: files.append(data_file) elif os.path.basename(data_file) in self.METADATA_FILENAMES: files.append(data_file) else: archives.append(data_file) return files, archives def _read_metadata(self, metadata_file): metadata_file_ext = os.path.splitext(metadata_file)[1][1:] if metadata_file_ext == "csv": # Use `pd.read_csv` (although slower) instead of `pyarrow.csv.read_csv` for reading CSV files for consistency with the CSV packaged module return pa.Table.from_pandas(pd.read_csv(metadata_file)) else: with open(metadata_file, "rb") as f: return paj.read_json(f) def _generate_examples(self, files, metadata_files, split_name, add_metadata, add_labels): split_metadata_files = metadata_files.get(split_name, []) sample_empty_metadata = ( {k: None for k in self.info.features if k != self.BASE_COLUMN_NAME} if self.info.features else {} ) last_checked_dir = None metadata_dir = None metadata_dict = None downloaded_metadata_file = None if split_metadata_files: metadata_ext = { os.path.splitext(downloaded_metadata_file)[1][1:] for _, downloaded_metadata_file in split_metadata_files } metadata_ext = metadata_ext.pop() file_idx = 0 for original_file, downloaded_file_or_dir in files: if original_file is not None: _, original_file_ext = os.path.splitext(original_file) if original_file_ext.lower() in self.EXTENSIONS: if add_metadata: # If the file is a file of a needed type, and we've just entered a new directory, # find the nereast metadata file (by counting path segments) for the directory current_dir = os.path.dirname(original_file) if last_checked_dir is None or last_checked_dir != current_dir: last_checked_dir = current_dir metadata_file_candidates = [ ( os.path.relpath(original_file, os.path.dirname(metadata_file_candidate)), metadata_file_candidate, downloaded_metadata_file, ) for metadata_file_candidate, downloaded_metadata_file in split_metadata_files if metadata_file_candidate is not None # ignore metadata_files that are inside archives and not os.path.relpath( original_file, os.path.dirname(metadata_file_candidate) ).startswith("..") ] if metadata_file_candidates: _, metadata_file, downloaded_metadata_file = min( metadata_file_candidates, key=lambda x: count_path_segments(x[0]) ) pa_metadata_table = self._read_metadata(downloaded_metadata_file) pa_file_name_array = pa_metadata_table["file_name"] pa_metadata_table = pa_metadata_table.drop(["file_name"]) metadata_dir = os.path.dirname(metadata_file) metadata_dict = { os.path.normpath(file_name).replace("\\", "/"): sample_metadata for file_name, sample_metadata in zip( pa_file_name_array.to_pylist(), pa_metadata_table.to_pylist() ) } else: raise ValueError( f"One or several metadata.{metadata_ext} were found, but not in the same directory or in a parent directory of {downloaded_file_or_dir}." ) if metadata_dir is not None and downloaded_metadata_file is not None: file_relpath = os.path.relpath(original_file, metadata_dir) file_relpath = file_relpath.replace("\\", "/") if file_relpath not in metadata_dict: raise ValueError( f"{self.BASE_COLUMN_NAME} at {file_relpath} doesn't have metadata in {downloaded_metadata_file}." ) sample_metadata = metadata_dict[file_relpath] else: raise ValueError( f"One or several metadata.{metadata_ext} were found, but not in the same directory or in a parent directory of {downloaded_file_or_dir}." ) else: sample_metadata = {} if add_labels: sample_label = {"label": os.path.basename(os.path.dirname(original_file))} else: sample_label = {} yield file_idx, { **sample_empty_metadata, self.BASE_COLUMN_NAME: downloaded_file_or_dir, **sample_metadata, **sample_label, } file_idx += 1 else: for downloaded_dir_file in downloaded_file_or_dir: _, downloaded_dir_file_ext = os.path.splitext(downloaded_dir_file) if downloaded_dir_file_ext.lower() in self.EXTENSIONS: if add_metadata: current_dir = os.path.dirname(downloaded_dir_file) if last_checked_dir is None or last_checked_dir != current_dir: last_checked_dir = current_dir metadata_file_candidates = [ ( os.path.relpath( downloaded_dir_file, os.path.dirname(downloaded_metadata_file) ), metadata_file_candidate, downloaded_metadata_file, ) for metadata_file_candidate, downloaded_metadata_file in split_metadata_files if metadata_file_candidate is None # ignore metadata_files that are not inside archives and not os.path.relpath( downloaded_dir_file, os.path.dirname(downloaded_metadata_file) ).startswith("..") ] if metadata_file_candidates: _, metadata_file, downloaded_metadata_file = min( metadata_file_candidates, key=lambda x: count_path_segments(x[0]) ) pa_metadata_table = self._read_metadata(downloaded_metadata_file) pa_file_name_array = pa_metadata_table["file_name"] pa_metadata_table = pa_metadata_table.drop(["file_name"]) metadata_dir = os.path.dirname(downloaded_metadata_file) metadata_dict = { os.path.normpath(file_name).replace("\\", "/"): sample_metadata for file_name, sample_metadata in zip( pa_file_name_array.to_pylist(), pa_metadata_table.to_pylist() ) } else: raise ValueError( f"One or several metadata.{metadata_ext} were found, but not in the same directory or in a parent directory of {downloaded_dir_file}." ) if metadata_dir is not None and downloaded_metadata_file is not None: downloaded_dir_file_relpath = os.path.relpath(downloaded_dir_file, metadata_dir) downloaded_dir_file_relpath = downloaded_dir_file_relpath.replace("\\", "/") if downloaded_dir_file_relpath not in metadata_dict: raise ValueError( f"{self.BASE_COLUMN_NAME} at {downloaded_dir_file_relpath} doesn't have metadata in {downloaded_metadata_file}." ) sample_metadata = metadata_dict[downloaded_dir_file_relpath] else: raise ValueError( f"One or several metadata.{metadata_ext} were found, but not in the same directory or in a parent directory of {downloaded_dir_file}." ) else: sample_metadata = {} if add_labels: sample_label = {"label": os.path.basename(os.path.dirname(downloaded_dir_file))} else: sample_label = {} yield file_idx, { **sample_empty_metadata, self.BASE_COLUMN_NAME: downloaded_dir_file, **sample_metadata, **sample_label, } file_idx += 1
datasets-main
src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
import itertools from dataclasses import dataclass from typing import Optional import pyarrow as pa import datasets from datasets.table import table_cast logger = datasets.utils.logging.get_logger(__name__) @dataclass class ArrowConfig(datasets.BuilderConfig): """BuilderConfig for Arrow.""" features: Optional[datasets.Features] = None class Arrow(datasets.ArrowBasedBuilder): BUILDER_CONFIG_CLASS = ArrowConfig def _info(self): return datasets.DatasetInfo(features=self.config.features) def _split_generators(self, dl_manager): """We handle string, list and dicts in datafiles""" if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") data_files = dl_manager.download_and_extract(self.config.data_files) if isinstance(data_files, (str, list, tuple)): files = data_files if isinstance(files, str): files = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive files = [dl_manager.iter_files(file) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] splits = [] for split_name, files in data_files.items(): if isinstance(files, str): files = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive files = [dl_manager.iter_files(file) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(files): with open(file, "rb") as f: self.info.features = datasets.Features.from_arrow_schema(pa.ipc.open_stream(f).schema) break splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"files": files})) return splits def _cast_table(self, pa_table: pa.Table) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example pa_table = table_cast(pa_table, self.info.features.arrow_schema) return pa_table def _generate_tables(self, files): for file_idx, file in enumerate(itertools.chain.from_iterable(files)): with open(file, "rb") as f: try: for batch_idx, record_batch in enumerate(pa.ipc.open_stream(f)): pa_table = pa.Table.from_batches([record_batch]) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"{file_idx}_{batch_idx}", self._cast_table(pa_table) except ValueError as e: logger.error(f"Failed to read file '{file}' with error {type(e)}: {e}") raise
datasets-main
src/datasets/packaged_modules/arrow/arrow.py
datasets-main
src/datasets/packaged_modules/arrow/__init__.py
datasets-main
src/datasets/packaged_modules/imagefolder/__init__.py
from typing import List import datasets from datasets.tasks import ImageClassification from ..folder_based_builder import folder_based_builder logger = datasets.utils.logging.get_logger(__name__) class ImageFolderConfig(folder_based_builder.FolderBasedBuilderConfig): """BuilderConfig for ImageFolder.""" drop_labels: bool = None drop_metadata: bool = None class ImageFolder(folder_based_builder.FolderBasedBuilder): BASE_FEATURE = datasets.Image BASE_COLUMN_NAME = "image" BUILDER_CONFIG_CLASS = ImageFolderConfig EXTENSIONS: List[str] # definition at the bottom of the script CLASSIFICATION_TASK = ImageClassification(image_column="image", label_column="label") # Obtained with: # ``` # import PIL.Image # IMAGE_EXTENSIONS = [] # PIL.Image.init() # for ext, format in PIL.Image.EXTENSION.items(): # if format in PIL.Image.OPEN: # IMAGE_EXTENSIONS.append(ext[1:]) # ``` # We intentionally do not run this code on launch because: # (1) Pillow is an optional dependency, so importing Pillow in global namespace is not allowed # (2) To ensure the list of supported extensions is deterministic IMAGE_EXTENSIONS = [ ".blp", ".bmp", ".dib", ".bufr", ".cur", ".pcx", ".dcx", ".dds", ".ps", ".eps", ".fit", ".fits", ".fli", ".flc", ".ftc", ".ftu", ".gbr", ".gif", ".grib", ".h5", ".hdf", ".png", ".apng", ".jp2", ".j2k", ".jpc", ".jpf", ".jpx", ".j2c", ".icns", ".ico", ".im", ".iim", ".tif", ".tiff", ".jfif", ".jpe", ".jpg", ".jpeg", ".mpg", ".mpeg", ".msp", ".pcd", ".pxr", ".pbm", ".pgm", ".ppm", ".pnm", ".psd", ".bw", ".rgb", ".rgba", ".sgi", ".ras", ".tga", ".icb", ".vda", ".vst", ".webp", ".wmf", ".emf", ".xbm", ".xpm", ] ImageFolder.EXTENSIONS = IMAGE_EXTENSIONS
datasets-main
src/datasets/packaged_modules/imagefolder/imagefolder.py
datasets-main
src/datasets/packaged_modules/generator/__init__.py
from dataclasses import dataclass from typing import Callable, Optional import datasets @dataclass class GeneratorConfig(datasets.BuilderConfig): generator: Optional[Callable] = None gen_kwargs: Optional[dict] = None features: Optional[datasets.Features] = None def __post_init__(self): assert self.generator is not None, "generator must be specified" if self.gen_kwargs is None: self.gen_kwargs = {} class Generator(datasets.GeneratorBasedBuilder): BUILDER_CONFIG_CLASS = GeneratorConfig def _info(self): return datasets.DatasetInfo(features=self.config.features) def _split_generators(self, dl_manager): return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs=self.config.gen_kwargs)] def _generate_examples(self, **gen_kwargs): for idx, ex in enumerate(self.config.generator(**gen_kwargs)): yield idx, ex
datasets-main
src/datasets/packaged_modules/generator/generator.py
datasets-main
src/datasets/packaged_modules/json/__init__.py
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline logger = datasets.utils.logging.get_logger(__name__) @dataclass class JsonConfig(datasets.BuilderConfig): """BuilderConfig for JSON.""" features: Optional[datasets.Features] = None encoding: str = "utf-8" encoding_errors: Optional[str] = None field: Optional[str] = None use_threads: bool = True # deprecated block_size: Optional[int] = None # deprecated chunksize: int = 10 << 20 # 10MB newlines_in_values: Optional[bool] = None class Json(datasets.ArrowBasedBuilder): BUILDER_CONFIG_CLASS = JsonConfig def _info(self): if self.config.block_size is not None: logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead") self.config.chunksize = self.config.block_size if self.config.use_threads is not True: logger.warning( "The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore." ) if self.config.newlines_in_values is not None: raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported") return datasets.DatasetInfo(features=self.config.features) def _split_generators(self, dl_manager): """We handle string, list and dicts in datafiles""" if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") data_files = dl_manager.download_and_extract(self.config.data_files) if isinstance(data_files, (str, list, tuple)): files = data_files if isinstance(files, str): files = [files] files = [dl_manager.iter_files(file) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] splits = [] for split_name, files in data_files.items(): if isinstance(files, str): files = [files] files = [dl_manager.iter_files(file) for file in files] splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"files": files})) return splits def _cast_table(self, pa_table: pa.Table) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): type = self.config.features.arrow_schema.field(column_name).type pa_table = pa_table.append_column(column_name, pa.array([None] * len(pa_table), type=type)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example pa_table = table_cast(pa_table, self.config.features.arrow_schema) return pa_table def _generate_tables(self, files): for file_idx, file in enumerate(itertools.chain.from_iterable(files)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(file, encoding=self.config.encoding, errors=self.config.encoding_errors) as f: dataset = json.load(f) # We keep only the field we are interested in dataset = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(dataset, (list, tuple)): keys = set().union(*[row.keys() for row in dataset]) mapping = {col: [row.get(col) for row in dataset] for col in keys} else: mapping = dataset pa_table = pa.Table.from_pydict(mapping) yield file_idx, self._cast_table(pa_table) # If the file has one json object per line else: with open(file, "rb") as f: batch_idx = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small block_size = max(self.config.chunksize // 32, 16 << 10) encoding_errors = ( self.config.encoding_errors if self.config.encoding_errors is not None else "strict" ) while True: batch = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(f) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": batch = batch.decode(self.config.encoding, errors=encoding_errors).encode("utf-8") try: while True: try: pa_table = paj.read_json( io.BytesIO(batch), read_options=paj.ReadOptions(block_size=block_size) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(e, pa.ArrowInvalid) and "straddling" not in str(e) or block_size > len(batch) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"Batch of {len(batch)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}." ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( file, encoding=self.config.encoding, errors=self.config.encoding_errors ) as f: dataset = json.load(f) except json.JSONDecodeError: logger.error(f"Failed to read file '{file}' with error {type(e)}: {e}") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(dataset, list): # list is the only sequence type supported in JSON try: keys = set().union(*[row.keys() for row in dataset]) mapping = {col: [row.get(col) for row in dataset] for col in keys} pa_table = pa.Table.from_pydict(mapping) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"Failed to read file '{file}' with error {type(e)}: {e}") raise ValueError(f"Not able to read records in the JSON file at {file}.") from None yield file_idx, self._cast_table(pa_table) break else: logger.error(f"Failed to read file '{file}' with error {type(e)}: {e}") raise ValueError( f"Not able to read records in the JSON file at {file}. " f"You should probably indicate the field of the JSON file containing your records. " f"This JSON file contain the following fields: {str(list(dataset.keys()))}. " f"Select the correct one and provide it as `field='XXX'` to the dataset loading method. " ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(pa_table) batch_idx += 1
datasets-main
src/datasets/packaged_modules/json/json.py
datasets-main
src/datasets/packaged_modules/csv/__init__.py
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal logger = datasets.utils.logging.get_logger(__name__) _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS = ["names", "prefix"] _PANDAS_READ_CSV_DEPRECATED_PARAMETERS = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS = ["encoding_errors", "on_bad_lines"] _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS = ["date_format"] @dataclass class CsvConfig(datasets.BuilderConfig): """BuilderConfig for CSV.""" sep: str = "," delimiter: Optional[str] = None header: Optional[Union[int, List[int], str]] = "infer" names: Optional[List[str]] = None column_names: Optional[List[str]] = None index_col: Optional[Union[int, str, List[int], List[str]]] = None usecols: Optional[Union[List[int], List[str]]] = None prefix: Optional[str] = None mangle_dupe_cols: bool = True engine: Optional[Literal["c", "python", "pyarrow"]] = None converters: Dict[Union[int, str], Callable[[Any], Any]] = None true_values: Optional[list] = None false_values: Optional[list] = None skipinitialspace: bool = False skiprows: Optional[Union[int, List[int]]] = None nrows: Optional[int] = None na_values: Optional[Union[str, List[str]]] = None keep_default_na: bool = True na_filter: bool = True verbose: bool = False skip_blank_lines: bool = True thousands: Optional[str] = None decimal: str = "." lineterminator: Optional[str] = None quotechar: str = '"' quoting: int = 0 escapechar: Optional[str] = None comment: Optional[str] = None encoding: Optional[str] = None dialect: Optional[str] = None error_bad_lines: bool = True warn_bad_lines: bool = True skipfooter: int = 0 doublequote: bool = True memory_map: bool = False float_precision: Optional[str] = None chunksize: int = 10_000 features: Optional[datasets.Features] = None encoding_errors: Optional[str] = "strict" on_bad_lines: Literal["error", "warn", "skip"] = "error" date_format: Optional[str] = None def __post_init__(self): if self.delimiter is not None: self.sep = self.delimiter if self.column_names is not None: self.names = self.column_names @property def pd_read_csv_kwargs(self): pd_read_csv_kwargs = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), pd_read_csv_parameter): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class Csv(datasets.ArrowBasedBuilder): BUILDER_CONFIG_CLASS = CsvConfig def _info(self): return datasets.DatasetInfo(features=self.config.features) def _split_generators(self, dl_manager): """We handle string, list and dicts in datafiles""" if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") data_files = dl_manager.download_and_extract(self.config.data_files) if isinstance(data_files, (str, list, tuple)): files = data_files if isinstance(files, str): files = [files] files = [dl_manager.iter_files(file) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] splits = [] for split_name, files in data_files.items(): if isinstance(files, str): files = [files] files = [dl_manager.iter_files(file) for file in files] splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"files": files})) return splits def _cast_table(self, pa_table: pa.Table) -> pa.Table: if self.config.features is not None: schema = self.config.features.arrow_schema if all(not require_storage_cast(feature) for feature in self.config.features.values()): # cheaper cast pa_table = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=schema) else: # more expensive cast; allows str <-> int/float or str to Audio for example pa_table = table_cast(pa_table, schema) return pa_table def _generate_tables(self, files): schema = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str dtype = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(feature) else object for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(files)): csv_file_reader = pd.read_csv(file, iterator=True, dtype=dtype, **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(csv_file_reader): pa_table = pa.Table.from_pandas(df) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(pa_table) except ValueError as e: logger.error(f"Failed to read file '{file}' with error {type(e)}: {e}") raise
datasets-main
src/datasets/packaged_modules/csv/csv.py
datasets-main
src/datasets/packaged_modules/text/__init__.py
import itertools import warnings from dataclasses import InitVar, dataclass from io import StringIO from typing import Optional import pyarrow as pa import datasets from datasets.features.features import require_storage_cast from datasets.table import table_cast logger = datasets.utils.logging.get_logger(__name__) @dataclass class TextConfig(datasets.BuilderConfig): """BuilderConfig for text files.""" features: Optional[datasets.Features] = None encoding: str = "utf-8" errors: InitVar[Optional[str]] = "deprecated" encoding_errors: Optional[str] = None chunksize: int = 10 << 20 # 10MB keep_linebreaks: bool = False sample_by: str = "line" def __post_init__(self, errors): if errors != "deprecated": warnings.warn( "'errors' was deprecated in favor of 'encoding_errors' in version 2.14.0 and will be removed in 3.0.0.\n" f"You can remove this warning by passing 'encoding_errors={errors}' instead.", FutureWarning, ) self.encoding_errors = errors class Text(datasets.ArrowBasedBuilder): BUILDER_CONFIG_CLASS = TextConfig def _info(self): return datasets.DatasetInfo(features=self.config.features) def _split_generators(self, dl_manager): """The `data_files` kwarg in load_dataset() can be a str, List[str], Dict[str,str], or Dict[str,List[str]]. If str or List[str], then the dataset returns only the 'train' split. If dict, then keys should be from the `datasets.Split` enum. """ if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") data_files = dl_manager.download_and_extract(self.config.data_files) if isinstance(data_files, (str, list, tuple)): files = data_files if isinstance(files, str): files = [files] files = [dl_manager.iter_files(file) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] splits = [] for split_name, files in data_files.items(): if isinstance(files, str): files = [files] files = [dl_manager.iter_files(file) for file in files] splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"files": files})) return splits def _cast_table(self, pa_table: pa.Table) -> pa.Table: if self.config.features is not None: schema = self.config.features.arrow_schema if all(not require_storage_cast(feature) for feature in self.config.features.values()): # cheaper cast pa_table = pa_table.cast(schema) else: # more expensive cast; allows str <-> int/float or str to Audio for example pa_table = table_cast(pa_table, schema) return pa_table else: return pa_table.cast(pa.schema({"text": pa.string()})) def _generate_tables(self, files): pa_table_names = list(self.config.features) if self.config.features is not None else ["text"] for file_idx, file in enumerate(itertools.chain.from_iterable(files)): # open in text mode, by default translates universal newlines ("\n", "\r\n" and "\r") into "\n" with open(file, encoding=self.config.encoding, errors=self.config.encoding_errors) as f: if self.config.sample_by == "line": batch_idx = 0 while True: batch = f.read(self.config.chunksize) if not batch: break batch += f.readline() # finish current line # StringIO.readlines, by default splits only on "\n" (and keeps line breaks) batch = StringIO(batch).readlines() if not self.config.keep_linebreaks: batch = [line.rstrip("\n") for line in batch] pa_table = pa.Table.from_arrays([pa.array(batch)], names=pa_table_names) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(pa_table) batch_idx += 1 elif self.config.sample_by == "paragraph": batch_idx = 0 batch = "" while True: new_batch = f.read(self.config.chunksize) if not new_batch: break batch += new_batch batch += f.readline() # finish current line batch = batch.split("\n\n") pa_table = pa.Table.from_arrays( [pa.array([example for example in batch[:-1] if example])], names=pa_table_names ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(pa_table) batch_idx += 1 batch = batch[-1] if batch: pa_table = pa.Table.from_arrays([pa.array([batch])], names=pa_table_names) yield (file_idx, batch_idx), self._cast_table(pa_table) elif self.config.sample_by == "document": text = f.read() pa_table = pa.Table.from_arrays([pa.array([text])], names=pa_table_names) yield file_idx, self._cast_table(pa_table)
datasets-main
src/datasets/packaged_modules/text/text.py
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast logger = datasets.utils.logging.get_logger(__name__) @dataclass class ParquetConfig(datasets.BuilderConfig): """BuilderConfig for Parquet.""" batch_size: int = 10_000 columns: Optional[List[str]] = None features: Optional[datasets.Features] = None class Parquet(datasets.ArrowBasedBuilder): BUILDER_CONFIG_CLASS = ParquetConfig def _info(self): return datasets.DatasetInfo(features=self.config.features) def _split_generators(self, dl_manager): """We handle string, list and dicts in datafiles""" if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") data_files = dl_manager.download_and_extract(self.config.data_files) if isinstance(data_files, (str, list, tuple)): files = data_files if isinstance(files, str): files = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive files = [dl_manager.iter_files(file) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] splits = [] for split_name, files in data_files.items(): if isinstance(files, str): files = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive files = [dl_manager.iter_files(file) for file in files] # Infer features if they are stored in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(files): with open(file, "rb") as f: features = datasets.Features.from_arrow_schema(pq.read_schema(f)) if self.config.columns is not None: features = datasets.Features( {col: feat for col, feat in features.items() if col in self.config.columns} ) self.info.features = features break splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"files": files})) return splits def _cast_table(self, pa_table: pa.Table) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example pa_table = table_cast(pa_table, self.info.features.arrow_schema) return pa_table def _generate_tables(self, files): if self.config.features is not None and self.config.columns is not None: if sorted(field.name for field in self.info.features.arrow_schema) != sorted(self.config.columns): raise ValueError( f"Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'" ) for file_idx, file in enumerate(itertools.chain.from_iterable(files)): with open(file, "rb") as f: parquet_file = pq.ParquetFile(f) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size, columns=self.config.columns) ): pa_table = pa.Table.from_batches([record_batch]) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"{file_idx}_{batch_idx}", self._cast_table(pa_table) except ValueError as e: logger.error(f"Failed to read file '{file}' with error {type(e)}: {e}") raise
datasets-main
src/datasets/packaged_modules/parquet/parquet.py
datasets-main
src/datasets/packaged_modules/parquet/__init__.py
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder logger = datasets.utils.logging.get_logger(__name__) class AudioFolderConfig(folder_based_builder.FolderBasedBuilderConfig): """Builder Config for AudioFolder.""" drop_labels: bool = None drop_metadata: bool = None class AudioFolder(folder_based_builder.FolderBasedBuilder): BASE_FEATURE = datasets.Audio BASE_COLUMN_NAME = "audio" BUILDER_CONFIG_CLASS = AudioFolderConfig EXTENSIONS: List[str] # definition at the bottom of the script CLASSIFICATION_TASK = AudioClassification(audio_column="audio", label_column="label") # Obtained with: # ``` # import soundfile as sf # # AUDIO_EXTENSIONS = [f".{format.lower()}" for format in sf.available_formats().keys()] # # # .mp3 is currently decoded via `torchaudio`, .opus decoding is supported if version of `libsndfile` >= 1.0.30: # AUDIO_EXTENSIONS.extend([".mp3", ".opus"]) # ``` # We intentionally do not run this code on launch because: # (1) Soundfile is an optional dependency, so importing it in global namespace is not allowed # (2) To ensure the list of supported extensions is deterministic AUDIO_EXTENSIONS = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] AudioFolder.EXTENSIONS = AUDIO_EXTENSIONS
datasets-main
src/datasets/packaged_modules/audiofolder/audiofolder.py
datasets-main
src/datasets/packaged_modules/audiofolder/__init__.py
datasets-main
src/datasets/packaged_modules/spark/__init__.py
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int logger = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class SparkConfig(datasets.BuilderConfig): """BuilderConfig for Spark.""" features: Optional[datasets.Features] = None def _reorder_dataframe_by_partition(df: "pyspark.sql.DataFrame", new_partition_order: List[int]): df_combined = df.select("*").where(f"part_id = {new_partition_order[0]}") for partition_id in new_partition_order[1:]: partition_df = df.select("*").where(f"part_id = {partition_id}") df_combined = df_combined.union(partition_df) return df_combined def _generate_iterable_examples( df: "pyspark.sql.DataFrame", partition_order: List[int], ): import pyspark def generate_fn(): df_with_partition_id = df.select("*", pyspark.sql.functions.spark_partition_id().alias("part_id")) partition_df = _reorder_dataframe_by_partition(df_with_partition_id, partition_order) row_id = 0 # pipeline next partition in parallel to hide latency rows = partition_df.toLocalIterator(prefetchPartitions=True) curr_partition = -1 for row in rows: row_as_dict = row.asDict() part_id = row_as_dict["part_id"] row_as_dict.pop("part_id") if curr_partition != part_id: curr_partition = part_id row_id = 0 yield f"{part_id}_{row_id}", row_as_dict row_id += 1 return generate_fn class SparkExamplesIterable(_BaseExamplesIterable): def __init__( self, df: "pyspark.sql.DataFrame", partition_order=None, ): self.df = df self.partition_order = partition_order or range(self.df.rdd.getNumPartitions()) self.generate_examples_fn = _generate_iterable_examples(self.df, self.partition_order) def __iter__(self): yield from self.generate_examples_fn() def shuffle_data_sources(self, generator: np.random.Generator) -> "SparkExamplesIterable": partition_order = list(range(self.df.rdd.getNumPartitions())) generator.shuffle(partition_order) return SparkExamplesIterable(self.df, partition_order=partition_order) def shard_data_sources(self, worker_id: int, num_workers: int) -> "SparkExamplesIterable": partition_order = self.split_shard_indices_by_worker(worker_id, num_workers) return SparkExamplesIterable(self.df, partition_order=partition_order) @property def n_shards(self) -> int: return len(self.partition_order) class Spark(datasets.DatasetBuilder): BUILDER_CONFIG_CLASS = SparkConfig def __init__( self, df: "pyspark.sql.DataFrame", cache_dir: str = None, working_dir: str = None, **config_kwargs, ): import pyspark self._spark = pyspark.sql.SparkSession.builder.getOrCreate() self.df = df self._working_dir = working_dir super().__init__( cache_dir=cache_dir, config_name=str(self.df.semanticHash()), **config_kwargs, ) def _validate_cache_dir(self): # Define this so that we don't reference self in create_cache_and_write_probe, which will result in a pickling # error due to pickling the SparkContext. cache_dir = self._cache_dir # Returns the path of the created file. def create_cache_and_write_probe(context): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(cache_dir, exist_ok=True) probe_file = os.path.join(cache_dir, "fs_test" + uuid.uuid4().hex) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(probe_file, "a") return [probe_file] if self._spark.conf.get("spark.master", "").startswith("local"): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: probe = ( self._spark.sparkContext.parallelize(range(1), 1).mapPartitions(create_cache_and_write_probe).collect() ) if os.path.isfile(probe[0]): return raise ValueError( "When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir" ) def _info(self): return datasets.DatasetInfo(features=self.config.features) def _split_generators(self, dl_manager: datasets.download.download_manager.DownloadManager): return [datasets.SplitGenerator(name=datasets.Split.TRAIN)] def _repartition_df_if_needed(self, max_shard_size): import pyspark def get_arrow_batch_size(it): for batch in it: yield pa.RecordBatch.from_pydict({"batch_bytes": [batch.nbytes]}) df_num_rows = self.df.count() sample_num_rows = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. approx_bytes_per_row = ( self.df.limit(sample_num_rows) .repartition(1) .mapInArrow(get_arrow_batch_size, "batch_bytes: long") .agg(pyspark.sql.functions.sum("batch_bytes").alias("sample_bytes")) .collect()[0] .sample_bytes / sample_num_rows ) approx_total_size = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. new_num_partitions = min(df_num_rows, int(approx_total_size / max_shard_size)) self.df = self.df.repartition(new_num_partitions) def _prepare_split_single( self, fpath: str, file_format: str, max_shard_size: int, ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: import pyspark writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter working_fpath = os.path.join(self._working_dir, os.path.basename(fpath)) if self._working_dir else fpath embed_local_files = file_format == "parquet" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. features = self.config.features writer_batch_size = self._writer_batch_size storage_options = self._fs.storage_options def write_arrow(it): # Within the same SparkContext, no two task attempts will share the same attempt ID. task_id = pyspark.TaskContext().taskAttemptId() first_batch = next(it, None) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]], names=["task_id", "num_examples", "num_bytes"], ) shard_id = 0 writer = writer_class( features=features, path=working_fpath.replace("SSSSS", f"{shard_id:05d}").replace("TTTTT", f"{task_id:05d}"), writer_batch_size=writer_batch_size, storage_options=storage_options, embed_local_files=embed_local_files, ) table = pa.Table.from_batches([first_batch]) writer.write_table(table) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: num_examples, num_bytes = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=["task_id", "num_examples", "num_bytes"], ) shard_id += 1 writer = writer_class( features=writer._features, path=working_fpath.replace("SSSSS", f"{shard_id:05d}").replace("TTTTT", f"{task_id:05d}"), writer_batch_size=writer_batch_size, storage_options=storage_options, embed_local_files=embed_local_files, ) table = pa.Table.from_batches([batch]) writer.write_table(table) if writer._num_bytes > 0: num_examples, num_bytes = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=["task_id", "num_examples", "num_bytes"], ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(working_fpath)): dest = os.path.join(os.path.dirname(fpath), os.path.basename(file)) shutil.move(file, dest) stats = ( self.df.mapInArrow(write_arrow, "task_id: long, num_examples: long, num_bytes: long") .groupBy("task_id") .agg( pyspark.sql.functions.sum("num_examples").alias("total_num_examples"), pyspark.sql.functions.sum("num_bytes").alias("total_num_bytes"), pyspark.sql.functions.count("num_bytes").alias("num_shards"), pyspark.sql.functions.collect_list("num_examples").alias("shard_lengths"), ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def _prepare_split( self, split_generator: "datasets.SplitGenerator", file_format: str = "arrow", max_shard_size: Optional[Union[str, int]] = None, num_proc: Optional[int] = None, **kwargs, ): self._validate_cache_dir() max_shard_size = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE) self._repartition_df_if_needed(max_shard_size) is_local = not is_remote_filesystem(self._fs) path_join = os.path.join if is_local else posixpath.join SUFFIX = "-TTTTT-SSSSS-of-NNNNN" fname = f"{self.name}-{split_generator.name}{SUFFIX}.{file_format}" fpath = path_join(self._output_dir, fname) total_num_examples = 0 total_num_bytes = 0 total_shards = 0 task_id_and_num_shards = [] all_shard_lengths = [] for task_id, content in self._prepare_split_single(fpath, file_format, max_shard_size): ( num_examples, num_bytes, num_shards, shard_lengths, ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards)) all_shard_lengths.extend(shard_lengths) split_generator.split_info.num_examples = total_num_examples split_generator.split_info.num_bytes = total_num_bytes # should rename everything at the end logger.debug(f"Renaming {total_shards} shards.") if total_shards > 1: split_generator.split_info.shard_lengths = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. fs = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( task_id: int, shard_id: int, global_shard_id: int, ): rename( fs, fpath.replace("SSSSS", f"{shard_id:05d}").replace("TTTTT", f"{task_id:05d}"), fpath.replace("TTTTT-SSSSS", f"{global_shard_id:05d}").replace("NNNNN", f"{total_shards:05d}"), ) args = [] global_shard_id = 0 for i in range(len(task_id_and_num_shards)): task_id, num_shards = task_id_and_num_shards[i] for shard_id in range(num_shards): args.append([task_id, shard_id, global_shard_id]) global_shard_id += 1 self._spark.sparkContext.parallelize(args, len(args)).map(lambda args: _rename_shard(*args)).collect() else: # don't use any pattern shard_id = 0 task_id = task_id_and_num_shards[0][0] self._rename( fpath.replace("SSSSS", f"{shard_id:05d}").replace("TTTTT", f"{task_id:05d}"), fpath.replace(SUFFIX, ""), ) def _get_examples_iterable_for_split( self, split_generator: "datasets.SplitGenerator", ) -> SparkExamplesIterable: return SparkExamplesIterable(self.df)
datasets-main
src/datasets/packaged_modules/spark/spark.py
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class PandasConfig(datasets.BuilderConfig): """BuilderConfig for Pandas.""" features: Optional[datasets.Features] = None class Pandas(datasets.ArrowBasedBuilder): BUILDER_CONFIG_CLASS = PandasConfig def _info(self): return datasets.DatasetInfo(features=self.config.features) def _split_generators(self, dl_manager): """We handle string, list and dicts in datafiles""" if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") data_files = dl_manager.download_and_extract(self.config.data_files) if isinstance(data_files, (str, list, tuple)): files = data_files if isinstance(files, str): files = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive files = [dl_manager.iter_files(file) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] splits = [] for split_name, files in data_files.items(): if isinstance(files, str): files = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive files = [dl_manager.iter_files(file) for file in files] splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"files": files})) return splits def _cast_table(self, pa_table: pa.Table) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example pa_table = table_cast(pa_table, self.config.features.arrow_schema) return pa_table def _generate_tables(self, files): for i, file in enumerate(itertools.chain.from_iterable(files)): with open(file, "rb") as f: pa_table = pa.Table.from_pandas(pd.read_pickle(f)) yield i, self._cast_table(pa_table)
datasets-main
src/datasets/packaged_modules/pandas/pandas.py
datasets-main
src/datasets/packaged_modules/pandas/__init__.py
datasets-main
src/datasets/packaged_modules/sql/__init__.py
import sys from dataclasses import dataclass from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast if TYPE_CHECKING: import sqlite3 import sqlalchemy logger = datasets.utils.logging.get_logger(__name__) @dataclass class SqlConfig(datasets.BuilderConfig): """BuilderConfig for SQL.""" sql: Union[str, "sqlalchemy.sql.Selectable"] = None con: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] = None index_col: Optional[Union[str, List[str]]] = None coerce_float: bool = True params: Optional[Union[List, Tuple, Dict]] = None parse_dates: Optional[Union[List, Dict]] = None columns: Optional[List[str]] = None chunksize: Optional[int] = 10_000 features: Optional[datasets.Features] = None def __post_init__(self): if self.sql is None: raise ValueError("sql must be specified") if self.con is None: raise ValueError("con must be specified") def create_config_id( self, config_kwargs: dict, custom_features: Optional[datasets.Features] = None, ) -> str: config_kwargs = config_kwargs.copy() # We need to stringify the Selectable object to make its hash deterministic # The process of stringifying is explained here: http://docs.sqlalchemy.org/en/latest/faq/sqlexpressions.html sql = config_kwargs["sql"] if not isinstance(sql, str): if datasets.config.SQLALCHEMY_AVAILABLE and "sqlalchemy" in sys.modules: import sqlalchemy if isinstance(sql, sqlalchemy.sql.Selectable): engine = sqlalchemy.create_engine(config_kwargs["con"].split("://")[0] + "://") sql_str = str(sql.compile(dialect=engine.dialect)) config_kwargs["sql"] = sql_str else: raise TypeError( f"Supported types for 'sql' are string and sqlalchemy.sql.Selectable but got {type(sql)}: {sql}" ) else: raise TypeError( f"Supported types for 'sql' are string and sqlalchemy.sql.Selectable but got {type(sql)}: {sql}" ) con = config_kwargs["con"] if not isinstance(con, str): config_kwargs["con"] = id(con) logger.info( f"SQL connection 'con' of type {type(con)} couldn't be hashed properly. To enable hashing, specify 'con' as URI string instead." ) return super().create_config_id(config_kwargs, custom_features=custom_features) @property def pd_read_sql_kwargs(self): pd_read_sql_kwargs = { "index_col": self.index_col, "columns": self.columns, "params": self.params, "coerce_float": self.coerce_float, "parse_dates": self.parse_dates, } return pd_read_sql_kwargs class Sql(datasets.ArrowBasedBuilder): BUILDER_CONFIG_CLASS = SqlConfig def _info(self): return datasets.DatasetInfo(features=self.config.features) def _split_generators(self, dl_manager): return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={})] def _cast_table(self, pa_table: pa.Table) -> pa.Table: if self.config.features is not None: schema = self.config.features.arrow_schema if all(not require_storage_cast(feature) for feature in self.config.features.values()): # cheaper cast pa_table = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=schema) else: # more expensive cast; allows str <-> int/float or str to Audio for example pa_table = table_cast(pa_table, schema) return pa_table def _generate_tables(self): chunksize = self.config.chunksize sql_reader = pd.read_sql( self.config.sql, self.config.con, chunksize=chunksize, **self.config.pd_read_sql_kwargs ) sql_reader = [sql_reader] if chunksize is None else sql_reader for chunk_idx, df in enumerate(sql_reader): pa_table = pa.Table.from_pandas(df) yield chunk_idx, self._cast_table(pa_table)
datasets-main
src/datasets/packaged_modules/sql/sql.py
# Copyright 2020 Optuna, Hugging Face # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Logging utilities. """ import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib log_levels = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } _default_log_level = logging.WARNING def _get_default_logging_level(): """ If DATASETS_VERBOSITY env var is set to one of the valid choices return that as the new default level. If it is not - fall back to ``_default_log_level`` """ env_level_str = os.getenv("DATASETS_VERBOSITY", None) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"Unknown option DATASETS_VERBOSITY={env_level_str}, " f"has to be one of: { ', '.join(log_levels.keys()) }" ) return _default_log_level def _get_library_name() -> str: return __name__.split(".")[0] def _get_library_root_logger() -> logging.Logger: return logging.getLogger(_get_library_name()) def _configure_library_root_logger() -> None: # Apply our default configuration to the library root logger. library_root_logger = _get_library_root_logger() library_root_logger.addHandler(logging.StreamHandler()) library_root_logger.setLevel(_get_default_logging_level()) def _reset_library_root_logger() -> None: library_root_logger = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET) def get_logger(name: Optional[str] = None) -> logging.Logger: """Return a logger with the specified name. This function can be used in dataset scripts. """ if name is None: name = _get_library_name() return logging.getLogger(name) def get_verbosity() -> int: """Return the current level for the HuggingFace datasets library's root logger. Returns: Logging level, e.g., `datasets.logging.DEBUG` and `datasets.logging.INFO`. <Tip> HuggingFace datasets library has following logging levels: - `datasets.logging.CRITICAL`, `datasets.logging.FATAL` - `datasets.logging.ERROR` - `datasets.logging.WARNING`, `datasets.logging.WARN` - `datasets.logging.INFO` - `datasets.logging.DEBUG` </Tip> """ return _get_library_root_logger().getEffectiveLevel() def set_verbosity(verbosity: int) -> None: """Set the level for the Hugging Face Datasets library's root logger. Args: verbosity: Logging level, e.g., `datasets.logging.DEBUG` and `datasets.logging.INFO`. """ _get_library_root_logger().setLevel(verbosity) def set_verbosity_info(): """Set the level for the Hugging Face datasets library's root logger to `INFO`. This will display most of the logging information and tqdm bars. Shortcut to `datasets.logging.set_verbosity(datasets.logging.INFO)`. """ return set_verbosity(INFO) def set_verbosity_warning(): """Set the level for the Hugging Face datasets library's root logger to `WARNING`. This will display only the warning and errors logging information and tqdm bars. Shortcut to `datasets.logging.set_verbosity(datasets.logging.WARNING)`. """ return set_verbosity(WARNING) def set_verbosity_debug(): """Set the level for the Hugging Face datasets library's root logger to `DEBUG`. This will display all the logging information and tqdm bars. Shortcut to `datasets.logging.set_verbosity(datasets.logging.DEBUG)`. """ return set_verbosity(DEBUG) def set_verbosity_error(): """Set the level for the Hugging Face datasets library's root logger to `ERROR`. This will display only the errors logging information and tqdm bars. Shortcut to `datasets.logging.set_verbosity(datasets.logging.ERROR)`. """ return set_verbosity(ERROR) def disable_propagation() -> None: """Disable propagation of the library log outputs. Note that log propagation is disabled by default. """ _get_library_root_logger().propagate = False def enable_propagation() -> None: """Enable propagation of the library log outputs. Please disable the Hugging Face datasets library's default handler to prevent double logging if the root logger has been configured. """ _get_library_root_logger().propagate = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class EmptyTqdm: """Dummy tqdm which doesn't do anything.""" def __init__(self, *args, **kwargs): # pylint: disable=unused-argument self._iterator = args[0] if args else None def __iter__(self): return iter(self._iterator) def __getattr__(self, _): """Return empty function.""" def empty_fn(*args, **kwargs): # pylint: disable=unused-argument return return empty_fn def __enter__(self): return self def __exit__(self, type_, value, traceback): return _tqdm_active = True class _tqdm_cls: def __call__(self, *args, disable=False, **kwargs): if _tqdm_active and not disable: return tqdm_lib.tqdm(*args, **kwargs) else: return EmptyTqdm(*args, **kwargs) def set_lock(self, *args, **kwargs): self._lock = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*args, **kwargs) def get_lock(self): if _tqdm_active: return tqdm_lib.tqdm.get_lock() def __delattr__(self, attr): """fix for https://github.com/huggingface/datasets/issues/6066""" try: del self.__dict__[attr] except KeyError: if attr != "_lock": raise AttributeError(attr) tqdm = _tqdm_cls() def is_progress_bar_enabled() -> bool: """Return a boolean indicating whether tqdm progress bars are enabled.""" global _tqdm_active return bool(_tqdm_active) def enable_progress_bar(): """Enable tqdm progress bar.""" global _tqdm_active _tqdm_active = True def disable_progress_bar(): """Disable tqdm progress bar.""" global _tqdm_active _tqdm_active = False
datasets-main
src/datasets/utils/logging.py
from typing import List import numpy as np def _number_of_shards_in_gen_kwargs(gen_kwargs: dict) -> int: """Return the number of possible shards according to the input gen_kwargs""" # Having lists of different sizes makes sharding ambigious, raise an error in this case # until we decide how to define sharding without ambiguity for users lists_lengths = {key: len(value) for key, value in gen_kwargs.items() if isinstance(value, list)} if len(set(lists_lengths.values())) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(f"\t- key {key} has length {length}" for key, length in lists_lengths.items()) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) max_length = max(lists_lengths.values(), default=0) return max(1, max_length) def _distribute_shards(num_shards: int, max_num_jobs: int) -> List[range]: """ Get the range of shard indices per job. If num_shards<max_num_jobs, then num_shards jobs are given a range of one shard. The shards indices order is preserved: e.g. all the first shards are given the first job. Moreover all the jobs are given approximately the same number of shards. Example: ```python >>> _distribute_shards(2, max_num_jobs=4) [range(0, 1), range(1, 2)] >>> _distribute_shards(10, max_num_jobs=3) [range(0, 4), range(4, 7), range(7, 10)] ``` """ shards_indices_per_group = [] for group_idx in range(max_num_jobs): num_shards_to_add = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break start = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 shard_indices = range(start, start + num_shards_to_add) shards_indices_per_group.append(shard_indices) return shards_indices_per_group def _split_gen_kwargs(gen_kwargs: dict, max_num_jobs: int) -> List[dict]: """Split the gen_kwargs into `max_num_job` gen_kwargs""" # Having lists of different sizes makes sharding ambigious, raise an error in this case num_shards = _number_of_shards_in_gen_kwargs(gen_kwargs) if num_shards == 1: return [dict(gen_kwargs)] else: shard_indices_per_group = _distribute_shards(num_shards=num_shards, max_num_jobs=max_num_jobs) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(value, list) else value for key, value in gen_kwargs.items() } for group_idx in range(len(shard_indices_per_group)) ] def _merge_gen_kwargs(gen_kwargs_list: List[dict]) -> dict: return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key], list) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def _shuffle_gen_kwargs(rng: np.random.Generator, gen_kwargs: dict) -> dict: """Return a shuffled copy of the input gen_kwargs""" # We must shuffle all the lists, and lists of the same size must have the same shuffling. # This way entangled lists of (shard, shard_metadata) are still in the right order. # First, let's generate the shuffled indices per list size list_sizes = {len(value) for value in gen_kwargs.values() if isinstance(value, list)} indices_per_size = {} for size in list_sizes: indices_per_size[size] = list(range(size)) rng.shuffle(indices_per_size[size]) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes shuffled_kwargs = dict(gen_kwargs) for key, value in shuffled_kwargs.items(): if isinstance(value, list): shuffled_kwargs[key] = [value[i] for i in indices_per_size[len(value)]] return shuffled_kwargs
datasets-main
src/datasets/utils/sharding.py
"""Contains utilities to flag a feature as "experimental" in datasets.""" import warnings from functools import wraps from typing import Callable def experimental(fn: Callable) -> Callable: """Decorator to flag a feature as experimental. An experimental feature trigger a warning when used as it might be subject to breaking changes in the future. Args: fn (`Callable`): The function to flag as experimental. Returns: `Callable`: The decorated function. Example: ```python >>> from datasets.utils import experimental >>> @experimental ... def my_function(): ... print("Hello world!") >>> my_function() UserWarning: 'my_function' is experimental and might be subject to breaking changes in the future. Hello world! ``` """ @wraps(fn) def _inner_fn(*args, **kwargs): warnings.warn( (f"'{fn.__name__}' is experimental and might be subject to breaking changes in the future."), UserWarning, ) return fn(*args, **kwargs) return _inner_fn
datasets-main
src/datasets/utils/experimental.py
import textwrap from collections import Counter from pathlib import Path from typing import Any, ClassVar, Dict, Optional, Tuple, Union import yaml from huggingface_hub import DatasetCardData from ..config import METADATA_CONFIGS_FIELD from ..utils.logging import get_logger from .deprecation_utils import deprecated logger = get_logger(__name__) class _NoDuplicateSafeLoader(yaml.SafeLoader): def _check_no_duplicates_on_constructed_node(self, node): keys = [self.constructed_objects[key_node] for key_node, _ in node.value] keys = [tuple(key) if isinstance(key, list) else key for key in keys] counter = Counter(keys) duplicate_keys = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f"Got duplicate yaml keys: {duplicate_keys}") def construct_mapping(self, node, deep=False): mapping = super().construct_mapping(node, deep=deep) self._check_no_duplicates_on_constructed_node(node) return mapping def _split_yaml_from_readme(readme_content: str) -> Tuple[Optional[str], str]: full_content = list(readme_content.splitlines()) if full_content and full_content[0] == "---" and "---" in full_content[1:]: sep_idx = full_content[1:].index("---") + 1 yamlblock = "\n".join(full_content[1:sep_idx]) return yamlblock, "\n".join(full_content[sep_idx + 1 :]) return None, "\n".join(full_content) @deprecated("Use `huggingface_hub.DatasetCardData` instead.") class DatasetMetadata(dict): # class attributes _FIELDS_WITH_DASHES = {"train_eval_index"} # train-eval-index in the YAML metadata @classmethod def from_readme(cls, path: Union[Path, str]) -> "DatasetMetadata": """Loads and validates the dataset metadata from its dataset card (README.md) Args: path (:obj:`Path`): Path to the dataset card (its README.md file) Returns: :class:`DatasetMetadata`: The dataset's metadata Raises: :obj:`TypeError`: If the dataset's metadata is invalid """ with open(path, encoding="utf-8") as readme_file: yaml_string, _ = _split_yaml_from_readme(readme_file.read()) if yaml_string is not None: return cls.from_yaml_string(yaml_string) else: return cls() def to_readme(self, path: Path): if path.exists(): with open(path, encoding="utf-8") as readme_file: readme_content = readme_file.read() else: readme_content = None updated_readme_content = self._to_readme(readme_content) with open(path, "w", encoding="utf-8") as readme_file: readme_file.write(updated_readme_content) def _to_readme(self, readme_content: Optional[str] = None) -> str: if readme_content is not None: _, content = _split_yaml_from_readme(readme_content) full_content = "---\n" + self.to_yaml_string() + "---\n" + content else: full_content = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def from_yaml_string(cls, string: str) -> "DatasetMetadata": """Loads and validates the dataset metadata from a YAML string Args: string (:obj:`str`): The YAML string Returns: :class:`DatasetMetadata`: The dataset's metadata Raises: :obj:`TypeError`: If the dataset's metadata is invalid """ metadata_dict = yaml.load(string, Loader=_NoDuplicateSafeLoader) or {} # Convert the YAML keys to DatasetMetadata fields metadata_dict = { (key.replace("-", "_") if key.replace("-", "_") in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**metadata_dict) def to_yaml_string(self) -> str: return yaml.safe_dump( { (key.replace("_", "-") if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() }, sort_keys=False, allow_unicode=True, encoding="utf-8", ).decode("utf-8") class MetadataConfigs(Dict[str, Dict[str, Any]]): """Should be in format {config_name: {**config_params}}.""" FIELD_NAME: ClassVar[str] = METADATA_CONFIGS_FIELD @staticmethod def _raise_if_data_files_field_not_valid(metadata_config: dict): yaml_data_files = metadata_config.get("data_files") if yaml_data_files is not None: yaml_error_message = textwrap.dedent( f""" Expected data_files in YAML to be either a string or a list of strings or a list of dicts with two keys: 'split' and 'path', but got {yaml_data_files} Examples of data_files in YAML: data_files: data.csv data_files: data/*.png data_files: - part0/* - part1/* data_files: - split: train path: train/* - split: test path: test/* data_files: - split: train path: - train/part1/* - train/part2/* - split: test path: test/* """ ) if not isinstance(yaml_data_files, (list, str)): raise ValueError(yaml_error_message) if isinstance(yaml_data_files, list): for yaml_data_files_item in yaml_data_files: if ( not isinstance(yaml_data_files_item, (str, dict)) or isinstance(yaml_data_files_item, dict) and not ( len(yaml_data_files_item) == 2 and "split" in yaml_data_files_item and isinstance(yaml_data_files_item.get("path"), (str, list)) ) ): raise ValueError(yaml_error_message) @classmethod def from_dataset_card_data(cls, dataset_card_data: DatasetCardData) -> "MetadataConfigs": if dataset_card_data.get(cls.FIELD_NAME): metadata_configs = dataset_card_data[cls.FIELD_NAME] if not isinstance(metadata_configs, list): raise ValueError(f"Expected {cls.FIELD_NAME} to be a list, but got '{metadata_configs}'") for metadata_config in metadata_configs: if "config_name" not in metadata_config: raise ValueError( f"Each config must include `config_name` field with a string name of a config, " f"but got {metadata_config}. " ) cls._raise_if_data_files_field_not_valid(metadata_config) return cls( { config["config_name"]: {param: value for param, value in config.items() if param != "config_name"} for config in metadata_configs } ) return cls() def to_dataset_card_data(self, dataset_card_data: DatasetCardData) -> None: if self: for metadata_config in self.values(): self._raise_if_data_files_field_not_valid(metadata_config) current_metadata_configs = self.from_dataset_card_data(dataset_card_data) total_metadata_configs = dict(sorted({**current_metadata_configs, **self}.items())) for config_name, config_metadata in total_metadata_configs.items(): config_metadata.pop("config_name", None) dataset_card_data[self.FIELD_NAME] = [ {"config_name": config_name, **config_metadata} for config_name, config_metadata in total_metadata_configs.items() ] def get_default_config_name(self) -> Optional[str]: default_config_name = None for config_name, metadata_config in self.items(): if config_name == "default" or metadata_config.get("default"): if default_config_name is None: default_config_name = config_name else: raise ValueError( f"Dataset has several default configs: '{default_config_name}' and '{config_name}'." ) return default_config_name # DEPRECATED - just here to support old versions of evaluate like 0.2.2 # To support new tasks on the Hugging Face Hub, please open a PR for this file: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts known_task_ids = { "image-classification": [], "translation": [], "image-segmentation": [], "fill-mask": [], "automatic-speech-recognition": [], "token-classification": [], "sentence-similarity": [], "audio-classification": [], "question-answering": [], "summarization": [], "zero-shot-classification": [], "table-to-text": [], "feature-extraction": [], "other": [], "multiple-choice": [], "text-classification": [], "text-to-image": [], "text2text-generation": [], "zero-shot-image-classification": [], "tabular-classification": [], "tabular-regression": [], "image-to-image": [], "tabular-to-text": [], "unconditional-image-generation": [], "text-retrieval": [], "text-to-speech": [], "object-detection": [], "audio-to-audio": [], "text-generation": [], "conversational": [], "table-question-answering": [], "visual-question-answering": [], "image-to-text": [], "reinforcement-learning": [], "voice-activity-detection": [], "time-series-forecasting": [], "document-question-answering": [], } if __name__ == "__main__": from argparse import ArgumentParser ap = ArgumentParser(usage="Validate the yaml metadata block of a README.md file.") ap.add_argument("readme_filepath") args = ap.parse_args() readme_filepath = Path(args.readme_filepath) dataset_metadata = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
datasets-main
src/datasets/utils/metadata.py
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Version utils.""" import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union _VERSION_REG = re.compile(r"^(?P<major>\d+)" r"\.(?P<minor>\d+)" r"\.(?P<patch>\d+)$") @total_ordering @dataclass class Version: """Dataset version `MAJOR.MINOR.PATCH`. Args: version_str (`str`): The dataset version. description (`str`): A description of what is new in this version. major (`str`): minor (`str`): patch (`str`): Example: ```py >>> VERSION = datasets.Version("1.0.0") ``` """ version_str: str description: Optional[str] = None major: Optional[Union[str, int]] = None minor: Optional[Union[str, int]] = None patch: Optional[Union[str, int]] = None def __post_init__(self): self.major, self.minor, self.patch = _str_to_version_tuple(self.version_str) def __repr__(self): return f"{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}" @property def tuple(self): return self.major, self.minor, self.patch def _validate_operand(self, other): if isinstance(other, str): return Version(other) elif isinstance(other, Version): return other raise TypeError(f"{other} (type {type(other)}) cannot be compared to version.") def __eq__(self, other): try: other = self._validate_operand(other) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__(self, other): other = self._validate_operand(other) return self.tuple < other.tuple def __hash__(self): return hash(_version_tuple_to_str(self.tuple)) @classmethod def from_dict(cls, dic): field_names = {f.name for f in dataclasses.fields(cls)} return cls(**{k: v for k, v in dic.items() if k in field_names}) def _to_yaml_string(self) -> str: return self.version_str def _str_to_version_tuple(version_str): """Return the tuple (major, minor, patch) version extracted from the str.""" res = _VERSION_REG.match(version_str) if not res: raise ValueError(f"Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.") return tuple(int(v) for v in [res.group("major"), res.group("minor"), res.group("patch")]) def _version_tuple_to_str(version_tuple): """Return the str version from the version tuple (major, minor, patch).""" return ".".join(str(v) for v in version_tuple)
datasets-main
src/datasets/utils/version.py
# loading package files: https://stackoverflow.com/a/20885799 import importlib.resources as pkg_resources import logging from pathlib import Path from typing import Any, List, Tuple import yaml from . import resources from .deprecation_utils import deprecated BASE_REF_URL = "https://github.com/huggingface/datasets/tree/main/src/datasets/utils" this_url = f"{BASE_REF_URL}/{__file__}" logger = logging.getLogger(__name__) def load_yaml_resource(resource: str) -> Tuple[Any, str]: content = pkg_resources.read_text(resources, resource) return yaml.safe_load(content), f"{BASE_REF_URL}/resources/{resource}" readme_structure, known_readme_structure_url = load_yaml_resource("readme_structure.yaml") FILLER_TEXT = [ "[Needs More Information]", "[More Information Needed]", "(https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)", ] # Dictionary representation of section/readme, error_list, warning_list ReadmeValidatorOutput = Tuple[dict, List[str], List[str]] class Section: def __init__(self, name: str, level: str, lines: List[str] = None, suppress_parsing_errors: bool = False): self.name = name self.level = level self.lines = lines self.text = "" self.is_empty_text = True self.content = {} self.parsing_error_list = [] self.parsing_warning_list = [] if self.lines is not None: self.parse(suppress_parsing_errors=suppress_parsing_errors) def parse(self, suppress_parsing_errors: bool = False): current_sub_level = "" current_lines = [] code_start = False for line in self.lines: if line.strip(" \n") == "": continue elif line.strip(" \n")[:3] == "```": code_start = not code_start elif line.split()[0] == self.level + "#" and not code_start: if current_sub_level != "": self.content[current_sub_level] = Section(current_sub_level, self.level + "#", current_lines) current_lines = [] else: if current_lines != []: self.text += "".join(current_lines).strip() if self.text != "" and self.text not in FILLER_TEXT: self.is_empty_text = False current_lines = [] current_sub_level = " ".join(line.split()[1:]).strip(" \n") else: current_lines.append(line) else: if current_sub_level != "": if current_sub_level in self.content: self.parsing_error_list.append( f"Multiple sections with the same heading `{current_sub_level}` have been found. Please keep only one of these sections." ) self.content[current_sub_level] = Section(current_sub_level, self.level + "#", current_lines) else: if current_lines != []: self.text += "".join(current_lines).strip() if self.text != "" and self.text not in FILLER_TEXT: self.is_empty_text = False if self.level == "" and not suppress_parsing_errors: if self.parsing_error_list != [] or self.parsing_warning_list != []: errors = errors = "\n".join("-\t" + x for x in self.parsing_error_list + self.parsing_warning_list) error_string = f"The following issues were found while parsing the README at `{self.name}`:\n" + errors raise ValueError(error_string) def validate(self, structure: dict) -> ReadmeValidatorOutput: """Validates a Section class object recursively using the structure provided as a dictionary. Args: structute (:obj: `dict`): The dictionary representing expected structure. Returns: :obj: `ReadmeValidatorOutput`: The dictionary representation of the section, and the errors. """ # Header text validation error_list = [] warning_list = [] if structure["allow_empty"] is False: # If content is expected if self.is_empty_text and self.content == {}: # If no content is found, mention it in the error_list error_list.append(f"Expected some content in section `{self.name}` but it is empty.") if structure["allow_empty_text"] is False: # If some text is expected if self.is_empty_text: # If no text is found, mention it in the error_list error_list.append( f"Expected some text in section `{self.name}` but it is empty (text in subsections are ignored)." ) # Subsections Validation if structure["subsections"] is not None: # If subsections are expected if self.content == {}: # If no subsections are present values = [subsection["name"] for subsection in structure["subsections"]] # Mention the expected values in the error_list error_list.append( f"Section `{self.name}` expected the following subsections: {', '.join(['`'+x+'`' for x in values])}. Found 'None'." ) else: # If some subsections are present structure_names = [subsection["name"] for subsection in structure["subsections"]] has_missing_subsections = False for idx, name in enumerate(structure_names): if name not in self.content: # If the expected subsection is not present error_list.append(f"Section `{self.name}` is missing subsection: `{name}`.") has_missing_subsections = True else: # If the subsection is present, validate subsection, return the result # and concat the errors from subsection to section error_list # Skip sublevel validation if current level is `###` if self.level == "###": continue else: _, subsec_error_list, subsec_warning_list = self.content[name].validate( structure["subsections"][idx] ) error_list += subsec_error_list warning_list += subsec_warning_list if has_missing_subsections: # we only allow to have extra subsections if all the other ones are here for name in self.content: if name not in structure_names: # If an extra subsection is present warning_list.append( f"`{self.name}` has an extra subsection: `{name}`. Skipping further validation checks for this subsection as expected structure is unknown." ) if error_list: # If there are errors, do not return the dictionary as it is invalid return {}, error_list, warning_list else: return self.to_dict(), error_list, warning_list def to_dict(self) -> dict: """Returns the dictionary representation of a section.""" return { "name": self.name, "text": self.text, "is_empty_text": self.is_empty_text, "subsections": [value.to_dict() for value in self.content.values()], } @deprecated("Use `huggingface_hub.DatasetCard` instead.") class ReadMe(Section): # Level 0 def __init__(self, name: str, lines: List[str], structure: dict = None, suppress_parsing_errors: bool = False): super().__init__(name=name, level="") # Not using lines here as we need to use a child class parse self.structure = structure self.yaml_tags_line_count = -2 self.tag_count = 0 self.lines = lines if self.lines is not None: self.parse(suppress_parsing_errors=suppress_parsing_errors) def validate(self): if self.structure is None: content, error_list, warning_list = self._validate(readme_structure) else: content, error_list, warning_list = self._validate(self.structure) if error_list != [] or warning_list != []: errors = "\n".join(["-\t" + x for x in error_list + warning_list]) error_string = f"The following issues were found for the README at `{self.name}`:\n" + errors raise ValueError(error_string) @classmethod def from_readme(cls, path: Path, structure: dict = None, suppress_parsing_errors: bool = False): with open(path, encoding="utf-8") as f: lines = f.readlines() return cls(path, lines, structure, suppress_parsing_errors=suppress_parsing_errors) @classmethod def from_string( cls, string: str, structure: dict = None, root_name: str = "root", suppress_parsing_errors: bool = False ): lines = string.split("\n") return cls(root_name, lines, structure, suppress_parsing_errors=suppress_parsing_errors) def parse(self, suppress_parsing_errors: bool = False): # Skip Tags line_count = 0 for line in self.lines: self.yaml_tags_line_count += 1 if line.strip(" \n") == "---": self.tag_count += 1 if self.tag_count == 2: break line_count += 1 if self.tag_count == 2: self.lines = self.lines[line_count + 1 :] # Get the last + 1 th item. else: self.lines = self.lines[self.tag_count :] super().parse(suppress_parsing_errors=suppress_parsing_errors) def __str__(self): """Returns the string of dictionary representation of the ReadMe.""" return str(self.to_dict()) def _validate(self, readme_structure): error_list = [] warning_list = [] if self.yaml_tags_line_count == 0: warning_list.append("Empty YAML markers are present in the README.") elif self.tag_count == 0: warning_list.append("No YAML markers are present in the README.") elif self.tag_count == 1: warning_list.append("Only the start of YAML tags present in the README.") # Check how many first level sections are present. num_first_level_keys = len(self.content.keys()) if num_first_level_keys > 1: # If more than one, add to the error list, continue error_list.append( f"The README has several first-level headings: {', '.join(['`'+x+'`' for x in list(self.content.keys())])}. Only one heading is expected. Skipping further validation for this README." ) elif num_first_level_keys < 1: # If less than one, append error. error_list.append( "The README has no first-level headings. One heading is expected. Skipping further validation for this README." ) else: # If one exactly start_key = list(self.content.keys())[0] # Get the key if start_key.startswith("Dataset Card for"): # Check correct start # If the starting is correct, validate all the sections _, sec_error_list, sec_warning_list = self.content[start_key].validate( readme_structure["subsections"][0] ) error_list += sec_error_list warning_list += sec_warning_list else: # If not found, append error error_list.append( "No first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README." ) if error_list: # If there are errors, do not return the dictionary as it is invalid return {}, error_list, warning_list else: return self.to_dict(), error_list, warning_list if __name__ == "__main__": from argparse import ArgumentParser ap = ArgumentParser(usage="Validate the content (excluding YAML tags) of a README.md file.") ap.add_argument("readme_filepath") args = ap.parse_args() readme_filepath = Path(args.readme_filepath) readme = ReadMe.from_readme(readme_filepath)
datasets-main
src/datasets/utils/readme.py
import os from apache_beam.io.filesystems import FileSystems from apache_beam.pipeline import Pipeline from .logging import get_logger CHUNK_SIZE = 2 << 20 # 2mb logger = get_logger(__name__) class BeamPipeline(Pipeline): """Wrapper over `apache_beam.pipeline.Pipeline` for convenience""" def is_local(self): runner = self._options.get_all_options().get("runner") return runner in [None, "DirectRunner", "PortableRunner"] def upload_local_to_remote(local_file_path, remote_file_path, force_upload=False): """Use the Beam Filesystems to upload to a remote directory on gcs/s3/hdfs...""" fs = FileSystems if fs.exists(remote_file_path): if force_upload: logger.info(f"Remote path already exist: {remote_file_path}. Overwriting it as force_upload=True.") else: logger.info(f"Remote path already exist: {remote_file_path}. Skipping it as force_upload=False.") return with fs.create(remote_file_path) as remote_file: with open(local_file_path, "rb") as local_file: chunk = local_file.read(CHUNK_SIZE) while chunk: remote_file.write(chunk) chunk = local_file.read(CHUNK_SIZE) def download_remote_to_local(remote_file_path, local_file_path, force_download=False): """Use the Beam Filesystems to download from a remote directory on gcs/s3/hdfs...""" fs = FileSystems if os.path.exists(local_file_path): if force_download: logger.info(f"Local path already exist: {remote_file_path}. Overwriting it as force_upload=True.") else: logger.info(f"Local path already exist: {remote_file_path}. Skipping it as force_upload=False.") return with fs.open(remote_file_path) as remote_file: with open(local_file_path, "wb") as local_file: chunk = remote_file.read(CHUNK_SIZE) while chunk: local_file.write(chunk) chunk = remote_file.read(CHUNK_SIZE)
datasets-main
src/datasets/utils/beam_utils.py
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # flake8: noqa # Lint as: python3 """Util import.""" __all__ = [ "VerificationMode", "Version", "disable_progress_bar", "enable_progress_bar", "is_progress_bar_enabled", "experimental", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
datasets-main
src/datasets/utils/__init__.py
# deprecated, please use daatsets.download.download_manager
datasets-main
src/datasets/utils/download_manager.py
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Some python utils function and classes. """ import copy import functools import itertools import multiprocessing.pool import os import queue import re import types import warnings from contextlib import contextmanager from dataclasses import fields, is_dataclass from io import BytesIO as StringIO from multiprocessing import Manager from queue import Empty from shutil import disk_usage from types import CodeType, FunctionType from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, TypeVar, Union from urllib.parse import urlparse import dill import multiprocess import multiprocess.pool import numpy as np from packaging import version from tqdm.auto import tqdm from .. import config from ..parallel import parallel_map from . import logging try: # pragma: no branch import typing_extensions as _typing_extensions from typing_extensions import Final, Literal except ImportError: _typing_extensions = Literal = Final = None logger = logging.get_logger(__name__) # NOTE: When used on an instance method, the cache is shared across all # instances and IS NOT per-instance. # See # https://stackoverflow.com/questions/14946264/python-lru-cache-decorator-per-instance # For @property methods, use @memoized_property below. memoize = functools.lru_cache def size_str(size_in_bytes): """Returns a human readable size string. If size_in_bytes is None, then returns "Unknown size". For example `size_str(1.5 * datasets.units.GiB) == "1.50 GiB"`. Args: size_in_bytes: `int` or `None`, the size, in bytes, that we want to format as a human-readable size string. """ if not size_in_bytes: return "Unknown size" _NAME_LIST = [("PiB", 2**50), ("TiB", 2**40), ("GiB", 2**30), ("MiB", 2**20), ("KiB", 2**10)] size_in_bytes = float(size_in_bytes) for name, size_bytes in _NAME_LIST: value = size_in_bytes / size_bytes if value >= 1.0: return f"{value:.2f} {name}" return f"{int(size_in_bytes)} bytes" def convert_file_size_to_int(size: Union[int, str]) -> int: """ Converts a size expressed as a string with digits an unit (like `"50MB"`) to an integer (in bytes). Args: size (`int` or `str`): The size to convert. Will be directly returned if an `int`. Example: ```py >>> convert_file_size_to_int("1MiB") 1048576 ``` """ if isinstance(size, int): return size if size.upper().endswith("PIB"): return int(size[:-3]) * (2**50) if size.upper().endswith("TIB"): return int(size[:-3]) * (2**40) if size.upper().endswith("GIB"): return int(size[:-3]) * (2**30) if size.upper().endswith("MIB"): return int(size[:-3]) * (2**20) if size.upper().endswith("KIB"): return int(size[:-3]) * (2**10) if size.upper().endswith("PB"): int_size = int(size[:-2]) * (10**15) return int_size // 8 if size.endswith("b") else int_size if size.upper().endswith("TB"): int_size = int(size[:-2]) * (10**12) return int_size // 8 if size.endswith("b") else int_size if size.upper().endswith("GB"): int_size = int(size[:-2]) * (10**9) return int_size // 8 if size.endswith("b") else int_size if size.upper().endswith("MB"): int_size = int(size[:-2]) * (10**6) return int_size // 8 if size.endswith("b") else int_size if size.upper().endswith("KB"): int_size = int(size[:-2]) * (10**3) return int_size // 8 if size.endswith("b") else int_size raise ValueError(f"`size={size}` is not in a valid format. Use an integer followed by the unit, e.g., '5GB'.") def glob_pattern_to_regex(pattern): # partially taken from fsspec: # https://github.com/fsspec/filesystem_spec/blob/697d0f8133d8a5fbc3926e4761d7ecd51337ce50/fsspec/asyn.py#L735 return ( pattern.replace("\\", r"\\") .replace(".", r"\.") .replace("*", ".*") .replace("+", r"\+") .replace("//", "/") .replace("(", r"\(") .replace(")", r"\)") .replace("|", r"\|") .replace("^", r"\^") .replace("$", r"\$") .rstrip("/") .replace("?", ".") ) def string_to_dict(string: str, pattern: str) -> Dict[str, str]: """Un-format a string using a python f-string pattern. From https://stackoverflow.com/a/36838374 Example:: >>> p = 'hello, my name is {name} and I am a {age} year old {what}' >>> s = p.format(name='cody', age=18, what='quarterback') >>> s 'hello, my name is cody and I am a 18 year old quarterback' >>> string_to_dict(s, p) {'age': '18', 'name': 'cody', 'what': 'quarterback'} Args: string (str): input string pattern (str): pattern formatted like a python f-string Returns: Dict[str, str]: dictionary of variable -> value, retrieved from the input using the pattern Raises: ValueError: if the string doesn't match the pattern """ regex = re.sub(r"{(.+?)}", r"(?P<_\1>.+)", pattern) result = re.search(regex, string) if result is None: raise ValueError(f"String {string} doesn't match the pattern {pattern}") values = list(result.groups()) keys = re.findall(r"{(.+?)}", pattern) _dict = dict(zip(keys, values)) return _dict def asdict(obj): """Convert an object to its dictionary representation recursively. <Added version="2.4.0"/> """ # Implementation based on https://docs.python.org/3/library/dataclasses.html#dataclasses.asdict def _is_dataclass_instance(obj): # https://docs.python.org/3/library/dataclasses.html#dataclasses.is_dataclass return is_dataclass(obj) and not isinstance(obj, type) def _asdict_inner(obj): if _is_dataclass_instance(obj): result = {} for f in fields(obj): value = _asdict_inner(getattr(obj, f.name)) if not f.init or value != f.default or f.metadata.get("include_in_asdict_even_if_is_default", False): result[f.name] = value return result elif isinstance(obj, tuple) and hasattr(obj, "_fields"): # obj is a namedtuple return type(obj)(*[_asdict_inner(v) for v in obj]) elif isinstance(obj, (list, tuple)): # Assume we can create an object of this type by passing in a # generator (which is not true for namedtuples, handled # above). return type(obj)(_asdict_inner(v) for v in obj) elif isinstance(obj, dict): return {_asdict_inner(k): _asdict_inner(v) for k, v in obj.items()} else: return copy.deepcopy(obj) if not isinstance(obj, dict) and not _is_dataclass_instance(obj): raise TypeError(f"{obj} is not a dict or a dataclass") return _asdict_inner(obj) @contextmanager def temporary_assignment(obj, attr, value): """Temporarily assign obj.attr to value.""" original = getattr(obj, attr, None) setattr(obj, attr, value) try: yield finally: setattr(obj, attr, original) @contextmanager def temp_seed(seed: int, set_pytorch=False, set_tensorflow=False): """Temporarily set the random seed. This works for python numpy, pytorch and tensorflow.""" np_state = np.random.get_state() np.random.seed(seed) if set_pytorch and config.TORCH_AVAILABLE: import torch torch_state = torch.random.get_rng_state() torch.random.manual_seed(seed) if torch.cuda.is_available(): torch_cuda_states = torch.cuda.get_rng_state_all() torch.cuda.manual_seed_all(seed) if set_tensorflow and config.TF_AVAILABLE: import tensorflow as tf from tensorflow.python import context as tfpycontext tf_state = tf.random.get_global_generator() temp_gen = tf.random.Generator.from_seed(seed) tf.random.set_global_generator(temp_gen) if not tf.executing_eagerly(): raise ValueError("Setting random seed for TensorFlow is only available in eager mode") tf_context = tfpycontext.context() # eager mode context tf_seed = tf_context._seed tf_rng_initialized = hasattr(tf_context, "_rng") if tf_rng_initialized: tf_rng = tf_context._rng tf_context._set_global_seed(seed) try: yield finally: np.random.set_state(np_state) if set_pytorch and config.TORCH_AVAILABLE: torch.random.set_rng_state(torch_state) if torch.cuda.is_available(): torch.cuda.set_rng_state_all(torch_cuda_states) if set_tensorflow and config.TF_AVAILABLE: tf.random.set_global_generator(tf_state) tf_context._seed = tf_seed if tf_rng_initialized: tf_context._rng = tf_rng else: delattr(tf_context, "_rng") def unique_values(values): """Iterate over iterable and return only unique values in order.""" seen = set() for value in values: if value not in seen: seen.add(value) yield value def no_op_if_value_is_null(func): """If the value is None, return None, else call `func`.""" def wrapper(value): return func(value) if value is not None else None return wrapper def first_non_null_value(iterable): """Return the index and the value of the first non-null value in the iterable. If all values are None, return -1 as index.""" for i, value in enumerate(iterable): if value is not None: return i, value return -1, None def zip_dict(*dicts): """Iterate over items of dictionaries grouped by their keys.""" for key in unique_values(itertools.chain(*dicts)): # set merge all keys # Will raise KeyError if the dict don't have the same keys yield key, tuple(d[key] for d in dicts) class NonMutableDict(dict): """Dict where keys can only be added but not modified. Will raise an error if the user try to overwrite one key. The error message can be customized during construction. It will be formatted using {key} for the overwritten key. """ def __init__(self, *args, **kwargs): self._error_msg = kwargs.pop( "error_msg", "Try to overwrite existing key: {key}", ) if kwargs: raise ValueError("NonMutableDict cannot be initialized with kwargs.") super().__init__(*args, **kwargs) def __setitem__(self, key, value): if key in self: raise ValueError(self._error_msg.format(key=key)) return super().__setitem__(key, value) def update(self, other): if any(k in self for k in other): raise ValueError(self._error_msg.format(key=set(self) & set(other))) return super().update(other) class classproperty(property): # pylint: disable=invalid-name """Descriptor to be used as decorator for @classmethods.""" def __get__(self, obj, objtype=None): return self.fget.__get__(None, objtype)() def _single_map_nested(args): """Apply a function recursively to each element of a nested data struct.""" function, data_struct, types, rank, disable_tqdm, desc = args # Singleton first to spare some computation if not isinstance(data_struct, dict) and not isinstance(data_struct, types): return function(data_struct) # Reduce logging to keep things readable in multiprocessing with tqdm if rank is not None and logging.get_verbosity() < logging.WARNING: logging.set_verbosity_warning() # Print at least one thing to fix tqdm in notebooks in multiprocessing # see https://github.com/tqdm/tqdm/issues/485#issuecomment-473338308 if rank is not None and not disable_tqdm and any("notebook" in tqdm_cls.__name__ for tqdm_cls in tqdm.__mro__): print(" ", end="", flush=True) # Loop over single examples or batches and write to buffer/file if examples are to be updated pbar_iterable = data_struct.items() if isinstance(data_struct, dict) else data_struct pbar_desc = (desc + " " if desc is not None else "") + "#" + str(rank) if rank is not None else desc with logging.tqdm(pbar_iterable, disable=disable_tqdm, position=rank, unit="obj", desc=pbar_desc) as pbar: if isinstance(data_struct, dict): return {k: _single_map_nested((function, v, types, None, True, None)) for k, v in pbar} else: mapped = [_single_map_nested((function, v, types, None, True, None)) for v in pbar] if isinstance(data_struct, list): return mapped elif isinstance(data_struct, tuple): return tuple(mapped) else: return np.array(mapped) def map_nested( function: Callable[[Any], Any], data_struct: Any, dict_only: bool = False, map_list: bool = True, map_tuple: bool = False, map_numpy: bool = False, num_proc: Optional[int] = None, parallel_min_length: int = 2, types: Optional[tuple] = None, disable_tqdm: bool = True, desc: Optional[str] = None, ) -> Any: """Apply a function recursively to each element of a nested data struct. Use multiprocessing if num_proc > 1 and the length of data_struct is greater than or equal to `parallel_min_length`. <Changed version="2.5.0"> Before version 2.5.0, multiprocessing was not used if `num_proc` was greater than or equal to ``len(iterable)``. Now, if `num_proc` is greater than or equal to ``len(iterable)``, `num_proc` is set to ``len(iterable)`` and multiprocessing is used. </Changed> Args: function (`Callable`): Function to be applied to `data_struct`. data_struct (`Any`): Data structure to apply `function` to. dict_only (`bool`, default `False`): Whether only apply `function` recursively to `dict` values in `data_struct`. map_list (`bool`, default `True`): Whether also apply `function` recursively to `list` elements (besides `dict` values). map_tuple (`bool`, default `False`): Whether also apply `function` recursively to `tuple` elements (besides `dict` values). map_numpy (`bool, default `False`): Whether also apply `function` recursively to `numpy.array` elements (besides `dict` values). num_proc (`int`, *optional*): Number of processes. parallel_min_length (`int`, default `2`): Minimum length of `data_struct` required for parallel processing. <Added version="2.5.0"/> types (`tuple`, *optional*): Additional types (besides `dict` values) to apply `function` recursively to their elements. disable_tqdm (`bool`, default `True`): Whether to disable the tqdm progressbar. desc (`str`, *optional*): Prefix for the tqdm progressbar. Returns: `Any` """ if types is None: types = [] if not dict_only: if map_list: types.append(list) if map_tuple: types.append(tuple) if map_numpy: types.append(np.ndarray) types = tuple(types) # Singleton if not isinstance(data_struct, dict) and not isinstance(data_struct, types): return function(data_struct) disable_tqdm = disable_tqdm or not logging.is_progress_bar_enabled() iterable = list(data_struct.values()) if isinstance(data_struct, dict) else data_struct if num_proc is None: num_proc = 1 if num_proc != -1 and num_proc <= 1 or len(iterable) < parallel_min_length: mapped = [ _single_map_nested((function, obj, types, None, True, None)) for obj in logging.tqdm(iterable, disable=disable_tqdm, desc=desc) ] else: with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message=".* is experimental and might be subject to breaking changes in the future\\.$", category=UserWarning, ) mapped = parallel_map(function, iterable, num_proc, types, disable_tqdm, desc, _single_map_nested) if isinstance(data_struct, dict): return dict(zip(data_struct.keys(), mapped)) else: if isinstance(data_struct, list): return mapped elif isinstance(data_struct, tuple): return tuple(mapped) else: return np.array(mapped) class NestedDataStructure: def __init__(self, data=None): self.data = data if data is not None else [] def flatten(self, data=None): data = data if data is not None else self.data if isinstance(data, dict): return self.flatten(list(data.values())) elif isinstance(data, (list, tuple)): return [flattened for item in data for flattened in self.flatten(item)] else: return [data] def has_sufficient_disk_space(needed_bytes, directory="."): try: free_bytes = disk_usage(os.path.abspath(directory)).free except OSError: return True return needed_bytes < free_bytes def _convert_github_url(url_path: str) -> Tuple[str, Optional[str]]: """Convert a link to a file on a github repo in a link to the raw github object.""" parsed = urlparse(url_path) sub_directory = None if parsed.scheme in ("http", "https", "s3") and parsed.netloc == "github.com": if "blob" in url_path: if not url_path.endswith(".py"): raise ValueError(f"External import from github at {url_path} should point to a file ending with '.py'") url_path = url_path.replace("blob", "raw") # Point to the raw file else: # Parse github url to point to zip github_path = parsed.path[1:] repo_info, branch = github_path.split("/tree/") if "/tree/" in github_path else (github_path, "master") repo_owner, repo_name = repo_info.split("/") url_path = f"https://github.com/{repo_owner}/{repo_name}/archive/{branch}.zip" sub_directory = f"{repo_name}-{branch}" return url_path, sub_directory def get_imports(file_path: str) -> Tuple[str, str, str, str]: """Find whether we should import or clone additional files for a given processing script. And list the import. We allow: - library dependencies, - local dependencies and - external dependencies whose url is specified with a comment starting from "# From:' followed by the raw url to a file, an archive or a github repository. external dependencies will be downloaded (and extracted if needed in the dataset folder). We also add an `__init__.py` to each sub-folder of a downloaded folder so the user can import from them in the script. Note that only direct import in the dataset processing script will be handled We don't recursively explore the additional import to download further files. Example:: import tensorflow import .c4_utils import .clicr.dataset-code.build_json_dataset # From: https://raw.githubusercontent.com/clips/clicr/master/dataset-code/build_json_dataset """ lines = [] with open(file_path, encoding="utf-8") as f: lines.extend(f.readlines()) logger.debug(f"Checking {file_path} for additional imports.") imports: List[Tuple[str, str, str, Optional[str]]] = [] is_in_docstring = False for line in lines: docstr_start_match = re.findall(r'[\s\S]*?"""[\s\S]*?', line) if len(docstr_start_match) == 1: # flip True <=> False only if doctstring # starts at line without finishing is_in_docstring = not is_in_docstring if is_in_docstring: # import statements in doctstrings should # not be added as required dependencies continue match = re.match(r"^import\s+(\.?)([^\s\.]+)[^#\r\n]*(?:#\s+From:\s+)?([^\r\n]*)", line, flags=re.MULTILINE) if match is None: match = re.match( r"^from\s+(\.?)([^\s\.]+)(?:[^\s]*)\s+import\s+[^#\r\n]*(?:#\s+From:\s+)?([^\r\n]*)", line, flags=re.MULTILINE, ) if match is None: continue if match.group(1): # The import starts with a '.', we will download the relevant file if any(imp[1] == match.group(2) for imp in imports): # We already have this import continue if match.group(3): # The import has a comment with 'From:', we'll retrieve it from the given url url_path = match.group(3) url_path, sub_directory = _convert_github_url(url_path) imports.append(("external", match.group(2), url_path, sub_directory)) elif match.group(2): # The import should be at the same place as the file imports.append(("internal", match.group(2), match.group(2), None)) else: if match.group(3): # The import has a comment with `From: git+https:...`, asks user to pip install from git. url_path = match.group(3) imports.append(("library", match.group(2), url_path, None)) else: imports.append(("library", match.group(2), match.group(2), None)) return imports class Pickler(dill.Pickler): """Same Pickler as the one from dill, but improved for notebooks and shells""" dispatch = dill._dill.MetaCatchingDict(dill.Pickler.dispatch.copy()) def save(self, obj, save_persistent_id=True): # lazy registration of reduction functions obj_type = type(obj) if obj_type not in Pickler.dispatch: if config.DILL_VERSION < version.parse("0.3.6"): def dill_log(pickler, msg): dill._dill.log.info(msg) elif config.DILL_VERSION.release[:3] in [version.parse("0.3.6").release, version.parse("0.3.7").release]: def dill_log(pickler, msg): dill._dill.logger.trace(pickler, msg) if (obj_type.__module__, obj_type.__name__) == ("_regex", "Pattern"): try: import regex @pklregister(obj_type) def _save_regex(pickler, obj): dill_log(pickler, f"Re: {obj}") args = ( obj.pattern, obj.flags, ) pickler.save_reduce(regex.compile, args, obj=obj) dill_log(pickler, "# Re") return except ImportError: pass elif (obj_type.__module__, obj_type.__name__) == ("torch", "Tensor"): try: import torch @pklregister(obj_type) def _save_tensor(pickler, obj): # `torch.from_numpy` is not picklable in `torch>=1.11.0` def _create_tensor(np_array): return torch.from_numpy(np_array) dill_log(pickler, f"To: {obj}") args = (obj.detach().cpu().numpy(),) pickler.save_reduce(_create_tensor, args, obj=obj) dill_log(pickler, "# To") return except ImportError: pass elif (obj_type.__module__, obj_type.__name__) == ("tiktoken.core", "Encoding"): try: import tiktoken @pklregister(obj_type) def _save_encoding(pickler, obj): dill_log(pickler, f"Enc: {obj}") args = (obj.name, obj._pat_str, obj._mergeable_ranks, obj._special_tokens) pickler.save_reduce(tiktoken.Encoding, args, obj=obj) dill_log(pickler, "# Enc") return except ImportError: pass elif obj_type.__module__.startswith("spacy.lang") and any( (cls.__module__, cls.__name__) == ("spacy.language", "Language") for cls in obj_type.__mro__ ): try: import spacy @pklregister(obj_type) def _save_lang(pickler, obj): def _create_lang(config, bytes_data): lang_cls = spacy.util.get_lang_class(config["nlp"]["lang"]) nlp = lang_cls.from_config(config) return nlp.from_bytes(bytes_data) dill_log(pickler, f"Sp: {obj}") args = (obj.config, obj.to_bytes()) pickler.save_reduce(_create_lang, args, obj=obj) dill_log(pickler, "# Sp") return except ImportError: pass dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) def memoize(self, obj): # don't memoize strings since two identical strings can have different python ids if type(obj) != str: # noqa: E721 dill.Pickler.memoize(self, obj) def dump(obj, file): """pickle an object to a file""" Pickler(file, recurse=True).dump(obj) return @contextmanager def _no_cache_fields(obj): try: if ( "PreTrainedTokenizerBase" in [base_class.__name__ for base_class in type(obj).__mro__] and hasattr(obj, "cache") and isinstance(obj.cache, dict) ): with temporary_assignment(obj, "cache", {}): yield else: yield except ImportError: yield def dumps(obj): """pickle an object to a string""" file = StringIO() with _no_cache_fields(obj): dump(obj, file) return file.getvalue() def pklregister(t): def proxy(func): Pickler.dispatch[t] = func return func return proxy if config.DILL_VERSION < version.parse("0.3.6"): @pklregister(CodeType) def _save_code(pickler, obj): """ From dill._dill.save_code This is a modified version that removes the origin (filename + line no.) of functions created in notebooks or shells for example. """ dill._dill.log.info(f"Co: {obj}") # The filename of a function is the .py file where it is defined. # Filenames of functions created in notebooks or shells start with '<' # ex: <ipython-input-13-9ed2afe61d25> for ipython, and <stdin> for shell # Filenames of functions created in ipykernel the filename # look like f"{tempdir}/ipykernel_{id1}/{id2}.py" # Moreover lambda functions have a special name: '<lambda>' # ex: (lambda x: x).__code__.co_name == "<lambda>" # True # # For the hashing mechanism we ignore where the function has been defined # More specifically: # - we ignore the filename of special functions (filename starts with '<') # - we always ignore the line number # - we only use the base name of the file instead of the whole path, # to be robust in case a script is moved for example. # # Only those two lines are different from the original implementation: co_filename = ( "" if obj.co_filename.startswith("<") or ( len(obj.co_filename.split(os.path.sep)) > 1 and obj.co_filename.split(os.path.sep)[-2].startswith("ipykernel_") ) or obj.co_name == "<lambda>" else os.path.basename(obj.co_filename) ) co_firstlineno = 1 # The rest is the same as in the original dill implementation if dill._dill.PY3: if hasattr(obj, "co_posonlyargcount"): args = ( obj.co_argcount, obj.co_posonlyargcount, obj.co_kwonlyargcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code, obj.co_consts, obj.co_names, obj.co_varnames, co_filename, obj.co_name, co_firstlineno, obj.co_lnotab, obj.co_freevars, obj.co_cellvars, ) else: args = ( obj.co_argcount, obj.co_kwonlyargcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code, obj.co_consts, obj.co_names, obj.co_varnames, co_filename, obj.co_name, co_firstlineno, obj.co_lnotab, obj.co_freevars, obj.co_cellvars, ) else: args = ( obj.co_argcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code, obj.co_consts, obj.co_names, obj.co_varnames, co_filename, obj.co_name, co_firstlineno, obj.co_lnotab, obj.co_freevars, obj.co_cellvars, ) pickler.save_reduce(CodeType, args, obj=obj) dill._dill.log.info("# Co") return elif config.DILL_VERSION.release[:3] in [version.parse("0.3.6").release, version.parse("0.3.7").release]: # From: https://github.com/uqfoundation/dill/blob/dill-0.3.6/dill/_dill.py#L1104 @pklregister(CodeType) def save_code(pickler, obj): dill._dill.logger.trace(pickler, "Co: %s", obj) ############################################################################################################ # Modification here for huggingface/datasets # The filename of a function is the .py file where it is defined. # Filenames of functions created in notebooks or shells start with '<' # ex: <ipython-input-13-9ed2afe61d25> for ipython, and <stdin> for shell # Filenames of functions created in ipykernel the filename # look like f"{tempdir}/ipykernel_{id1}/{id2}.py" # Moreover lambda functions have a special name: '<lambda>' # ex: (lambda x: x).__code__.co_name == "<lambda>" # True # # For the hashing mechanism we ignore where the function has been defined # More specifically: # - we ignore the filename of special functions (filename starts with '<') # - we always ignore the line number # - we only use the base name of the file instead of the whole path, # to be robust in case a script is moved for example. # # Only those two lines are different from the original implementation: co_filename = ( "" if obj.co_filename.startswith("<") or ( len(obj.co_filename.split(os.path.sep)) > 1 and obj.co_filename.split(os.path.sep)[-2].startswith("ipykernel_") ) or obj.co_name == "<lambda>" else os.path.basename(obj.co_filename) ) co_firstlineno = 1 # The rest is the same as in the original dill implementation, except for the replacements: # - obj.co_filename => co_filename # - obj.co_firstlineno => co_firstlineno ############################################################################################################ if hasattr(obj, "co_endlinetable"): # python 3.11a (20 args) args = ( obj.co_lnotab, # for < python 3.10 [not counted in args] obj.co_argcount, obj.co_posonlyargcount, obj.co_kwonlyargcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code, obj.co_consts, obj.co_names, obj.co_varnames, co_filename, # Modification for huggingface/datasets ############################################ obj.co_name, obj.co_qualname, co_firstlineno, # Modification for huggingface/datasets ######################################### obj.co_linetable, obj.co_endlinetable, obj.co_columntable, obj.co_exceptiontable, obj.co_freevars, obj.co_cellvars, ) elif hasattr(obj, "co_exceptiontable"): # python 3.11 (18 args) args = ( obj.co_lnotab, # for < python 3.10 [not counted in args] obj.co_argcount, obj.co_posonlyargcount, obj.co_kwonlyargcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code, obj.co_consts, obj.co_names, obj.co_varnames, co_filename, # Modification for huggingface/datasets ############################################ obj.co_name, obj.co_qualname, co_firstlineno, # Modification for huggingface/datasets ######################################### obj.co_linetable, obj.co_exceptiontable, obj.co_freevars, obj.co_cellvars, ) elif hasattr(obj, "co_linetable"): # python 3.10 (16 args) args = ( obj.co_lnotab, # for < python 3.10 [not counted in args] obj.co_argcount, obj.co_posonlyargcount, obj.co_kwonlyargcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code, obj.co_consts, obj.co_names, obj.co_varnames, co_filename, # Modification for huggingface/datasets ############################################ obj.co_name, co_firstlineno, # Modification for huggingface/datasets ######################################### obj.co_linetable, obj.co_freevars, obj.co_cellvars, ) elif hasattr(obj, "co_posonlyargcount"): # python 3.8 (16 args) args = ( obj.co_argcount, obj.co_posonlyargcount, obj.co_kwonlyargcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code, obj.co_consts, obj.co_names, obj.co_varnames, co_filename, # Modification for huggingface/datasets ############################################ obj.co_name, co_firstlineno, # Modification for huggingface/datasets ######################################### obj.co_lnotab, obj.co_freevars, obj.co_cellvars, ) else: # python 3.7 (15 args) args = ( obj.co_argcount, obj.co_kwonlyargcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code, obj.co_consts, obj.co_names, obj.co_varnames, co_filename, # Modification for huggingface/datasets ############################################ obj.co_name, co_firstlineno, # Modification for huggingface/datasets ######################################### obj.co_lnotab, obj.co_freevars, obj.co_cellvars, ) pickler.save_reduce(dill._dill._create_code, args, obj=obj) dill._dill.logger.trace(pickler, "# Co") return if config.DILL_VERSION < version.parse("0.3.5"): @pklregister(FunctionType) def save_function(pickler, obj): """ From dill._dill.save_function This is a modified version that make globs deterministic since the order of the keys in the output dictionary of globalvars can change. """ if not dill._dill._locate_function(obj): dill._dill.log.info(f"F1: {obj}") if getattr(pickler, "_recurse", False): # recurse to get all globals referred to by obj globalvars = dill.detect.globalvars globs = globalvars(obj, recurse=True, builtin=True) if id(obj) in dill._dill.stack: globs = obj.__globals__ if dill._dill.PY3 else obj.func_globals else: globs = obj.__globals__ if dill._dill.PY3 else obj.func_globals # globs is a dictionary with keys = var names (str) and values = python objects # however the dictionary is not always loaded in the same order # therefore we have to sort the keys to make deterministic. # This is important to make `dump` deterministic. # Only this line is different from the original implementation: globs = dict(sorted(globs.items())) # The rest is the same as in the original dill implementation _byref = getattr(pickler, "_byref", None) _recurse = getattr(pickler, "_recurse", None) _memo = (id(obj) in dill._dill.stack) and (_recurse is not None) dill._dill.stack[id(obj)] = len(dill._dill.stack), obj if dill._dill.PY3: _super = ("super" in getattr(obj.__code__, "co_names", ())) and (_byref is not None) if _super: pickler._byref = True if _memo: pickler._recurse = False fkwdefaults = getattr(obj, "__kwdefaults__", None) pickler.save_reduce( dill._dill._create_function, (obj.__code__, globs, obj.__name__, obj.__defaults__, obj.__closure__, obj.__dict__, fkwdefaults), obj=obj, ) else: _super = ( ("super" in getattr(obj.func_code, "co_names", ())) and (_byref is not None) and getattr(pickler, "_recurse", False) ) if _super: pickler._byref = True if _memo: pickler._recurse = False pickler.save_reduce( dill._dill._create_function, (obj.func_code, globs, obj.func_name, obj.func_defaults, obj.func_closure, obj.__dict__), obj=obj, ) if _super: pickler._byref = _byref if _memo: pickler._recurse = _recurse if ( dill._dill.OLDER and not _byref and (_super or (not _super and _memo) or (not _super and not _memo and _recurse)) ): pickler.clear_memo() dill._dill.log.info("# F1") else: dill._dill.log.info(f"F2: {obj}") name = getattr(obj, "__qualname__", getattr(obj, "__name__", None)) dill._dill.StockPickler.save_global(pickler, obj, name=name) dill._dill.log.info("# F2") return elif config.DILL_VERSION.release[:3] == version.parse("0.3.5").release: # 0.3.5, 0.3.5.1 # https://github.com/uqfoundation/dill/blob/dill-0.3.5.1/dill/_dill.py @pklregister(FunctionType) def save_function(pickler, obj): if not dill._dill._locate_function(obj, pickler): dill._dill.log.info("F1: %s" % obj) _recurse = getattr(pickler, "_recurse", None) _postproc = getattr(pickler, "_postproc", None) _main_modified = getattr(pickler, "_main_modified", None) _original_main = getattr(pickler, "_original_main", dill._dill.__builtin__) # 'None' postproc_list = [] if _recurse: # recurse to get all globals referred to by obj from dill.detect import globalvars globs_copy = globalvars(obj, recurse=True, builtin=True) # Add the name of the module to the globs dictionary to prevent # the duplication of the dictionary. Pickle the unpopulated # globals dictionary and set the remaining items after the function # is created to correctly handle recursion. globs = {"__name__": obj.__module__} else: globs_copy = obj.__globals__ if dill._dill.PY3 else obj.func_globals # If the globals is the __dict__ from the module being saved as a # session, substitute it by the dictionary being actually saved. if _main_modified and globs_copy is _original_main.__dict__: globs_copy = getattr(pickler, "_main", _original_main).__dict__ globs = globs_copy # If the globals is a module __dict__, do not save it in the pickle. elif ( globs_copy is not None and obj.__module__ is not None and getattr(dill._dill._import_module(obj.__module__, True), "__dict__", None) is globs_copy ): globs = globs_copy else: globs = {"__name__": obj.__module__} # DONE: modified here for huggingface/datasets # - globs is a dictionary with keys = var names (str) and values = python objects # - globs_copy is a dictionary with keys = var names (str) and values = ids of the python objects # however the dictionary is not always loaded in the same order # therefore we have to sort the keys to make deterministic. # This is important to make `dump` deterministic. # Only these line are different from the original implementation: # START globs_is_globs_copy = globs is globs_copy globs = dict(sorted(globs.items())) if globs_is_globs_copy: globs_copy = globs elif globs_copy is not None: globs_copy = dict(sorted(globs_copy.items())) # END if globs_copy is not None and globs is not globs_copy: # In the case that the globals are copied, we need to ensure that # the globals dictionary is updated when all objects in the # dictionary are already created. if dill._dill.PY3: glob_ids = {id(g) for g in globs_copy.values()} else: glob_ids = {id(g) for g in globs_copy.itervalues()} for stack_element in _postproc: if stack_element in glob_ids: _postproc[stack_element].append((dill._dill._setitems, (globs, globs_copy))) break else: postproc_list.append((dill._dill._setitems, (globs, globs_copy))) if dill._dill.PY3: closure = obj.__closure__ state_dict = {} for fattrname in ("__doc__", "__kwdefaults__", "__annotations__"): fattr = getattr(obj, fattrname, None) if fattr is not None: state_dict[fattrname] = fattr if obj.__qualname__ != obj.__name__: state_dict["__qualname__"] = obj.__qualname__ if "__name__" not in globs or obj.__module__ != globs["__name__"]: state_dict["__module__"] = obj.__module__ state = obj.__dict__ if type(state) is not dict: # noqa: E721 state_dict["__dict__"] = state state = None if state_dict: state = state, state_dict dill._dill._save_with_postproc( pickler, ( dill._dill._create_function, (obj.__code__, globs, obj.__name__, obj.__defaults__, closure), state, ), obj=obj, postproc_list=postproc_list, ) else: closure = obj.func_closure if obj.__doc__ is not None: postproc_list.append((setattr, (obj, "__doc__", obj.__doc__))) if "__name__" not in globs or obj.__module__ != globs["__name__"]: postproc_list.append((setattr, (obj, "__module__", obj.__module__))) if obj.__dict__: postproc_list.append((setattr, (obj, "__dict__", obj.__dict__))) dill._dill._save_with_postproc( pickler, (dill._dill._create_function, (obj.func_code, globs, obj.func_name, obj.func_defaults, closure)), obj=obj, postproc_list=postproc_list, ) # Lift closure cell update to earliest function (#458) if _postproc: topmost_postproc = next(iter(_postproc.values()), None) if closure and topmost_postproc: for cell in closure: possible_postproc = (setattr, (cell, "cell_contents", obj)) try: topmost_postproc.remove(possible_postproc) except ValueError: continue # Change the value of the cell pickler.save_reduce(*possible_postproc) # pop None created by calling preprocessing step off stack if dill._dill.PY3: pickler.write(bytes("0", "UTF-8")) else: pickler.write("0") dill._dill.log.info("# F1") else: dill._dill.log.info("F2: %s" % obj) name = getattr(obj, "__qualname__", getattr(obj, "__name__", None)) dill._dill.StockPickler.save_global(pickler, obj, name=name) dill._dill.log.info("# F2") return elif config.DILL_VERSION.release[:3] in [version.parse("0.3.6").release, version.parse("0.3.7").release]: # From: https://github.com/uqfoundation/dill/blob/dill-0.3.6/dill/_dill.py#L1739 @pklregister(FunctionType) def save_function(pickler, obj): if not dill._dill._locate_function(obj, pickler): if type(obj.__code__) is not CodeType: # Some PyPy builtin functions have no module name, and thus are not # able to be located module_name = getattr(obj, "__module__", None) if module_name is None: module_name = dill._dill.__builtin__.__name__ module = dill._dill._import_module(module_name, safe=True) _pypy_builtin = False try: found, _ = dill._dill._getattribute(module, obj.__qualname__) if getattr(found, "__func__", None) is obj: _pypy_builtin = True except AttributeError: pass if _pypy_builtin: dill._dill.logger.trace(pickler, "F3: %s", obj) pickler.save_reduce(getattr, (found, "__func__"), obj=obj) dill._dill.logger.trace(pickler, "# F3") return dill._dill.logger.trace(pickler, "F1: %s", obj) _recurse = getattr(pickler, "_recurse", None) _postproc = getattr(pickler, "_postproc", None) _main_modified = getattr(pickler, "_main_modified", None) _original_main = getattr(pickler, "_original_main", dill._dill.__builtin__) # 'None' postproc_list = [] if _recurse: # recurse to get all globals referred to by obj from dill.detect import globalvars globs_copy = globalvars(obj, recurse=True, builtin=True) # Add the name of the module to the globs dictionary to prevent # the duplication of the dictionary. Pickle the unpopulated # globals dictionary and set the remaining items after the function # is created to correctly handle recursion. globs = {"__name__": obj.__module__} else: globs_copy = obj.__globals__ # If the globals is the __dict__ from the module being saved as a # session, substitute it by the dictionary being actually saved. if _main_modified and globs_copy is _original_main.__dict__: globs_copy = getattr(pickler, "_main", _original_main).__dict__ globs = globs_copy # If the globals is a module __dict__, do not save it in the pickle. elif ( globs_copy is not None and obj.__module__ is not None and getattr(dill._dill._import_module(obj.__module__, True), "__dict__", None) is globs_copy ): globs = globs_copy else: globs = {"__name__": obj.__module__} ######################################################################################################## # Modification here for huggingface/datasets # - globs is a dictionary with keys = var names (str) and values = python objects # - globs_copy is a dictionary with keys = var names (str) and values = ids of the python objects # However the dictionary is not always loaded in the same order, # therefore we have to sort the keys to make deterministic. # This is important to make `dump` deterministic. # Only these line are different from the original implementation: # START globs_is_globs_copy = globs is globs_copy globs = dict(sorted(globs.items())) if globs_is_globs_copy: globs_copy = globs elif globs_copy is not None: globs_copy = dict(sorted(globs_copy.items())) # END ######################################################################################################## if globs_copy is not None and globs is not globs_copy: # In the case that the globals are copied, we need to ensure that # the globals dictionary is updated when all objects in the # dictionary are already created. glob_ids = {id(g) for g in globs_copy.values()} for stack_element in _postproc: if stack_element in glob_ids: _postproc[stack_element].append((dill._dill._setitems, (globs, globs_copy))) break else: postproc_list.append((dill._dill._setitems, (globs, globs_copy))) closure = obj.__closure__ state_dict = {} for fattrname in ("__doc__", "__kwdefaults__", "__annotations__"): fattr = getattr(obj, fattrname, None) if fattr is not None: state_dict[fattrname] = fattr if obj.__qualname__ != obj.__name__: state_dict["__qualname__"] = obj.__qualname__ if "__name__" not in globs or obj.__module__ != globs["__name__"]: state_dict["__module__"] = obj.__module__ state = obj.__dict__ if type(state) is not dict: # noqa: E721 state_dict["__dict__"] = state state = None if state_dict: state = state, state_dict dill._dill._save_with_postproc( pickler, (dill._dill._create_function, (obj.__code__, globs, obj.__name__, obj.__defaults__, closure), state), obj=obj, postproc_list=postproc_list, ) # Lift closure cell update to earliest function (#458) if _postproc: topmost_postproc = next(iter(_postproc.values()), None) if closure and topmost_postproc: for cell in closure: possible_postproc = (setattr, (cell, "cell_contents", obj)) try: topmost_postproc.remove(possible_postproc) except ValueError: continue # Change the value of the cell pickler.save_reduce(*possible_postproc) # pop None created by calling preprocessing step off stack pickler.write(bytes("0", "UTF-8")) dill._dill.logger.trace(pickler, "# F1") else: dill._dill.logger.trace(pickler, "F2: %s", obj) name = getattr(obj, "__qualname__", getattr(obj, "__name__", None)) dill._dill.StockPickler.save_global(pickler, obj, name=name) dill._dill.logger.trace(pickler, "# F2") return def copyfunc(func): result = types.FunctionType(func.__code__, func.__globals__, func.__name__, func.__defaults__, func.__closure__) result.__kwdefaults__ = func.__kwdefaults__ return result Y = TypeVar("Y") def _write_generator_to_queue(queue: queue.Queue, func: Callable[..., Iterable[Y]], kwargs: dict) -> int: for i, result in enumerate(func(**kwargs)): queue.put(result) return i def _get_pool_pid(pool: Union[multiprocessing.pool.Pool, multiprocess.pool.Pool]) -> Set[int]: return {f.pid for f in pool._pool} def iflatmap_unordered( pool: Union[multiprocessing.pool.Pool, multiprocess.pool.Pool], func: Callable[..., Iterable[Y]], *, kwargs_iterable: Iterable[dict], ) -> Iterable[Y]: initial_pool_pid = _get_pool_pid(pool) pool_changed = False manager_cls = Manager if isinstance(pool, multiprocessing.pool.Pool) else multiprocess.Manager with manager_cls() as manager: queue = manager.Queue() async_results = [ pool.apply_async(_write_generator_to_queue, (queue, func, kwargs)) for kwargs in kwargs_iterable ] try: while True: try: yield queue.get(timeout=0.05) except Empty: if all(async_result.ready() for async_result in async_results) and queue.empty(): break if _get_pool_pid(pool) != initial_pool_pid: pool_changed = True # One of the subprocesses has died. We should not wait forever. raise RuntimeError( "One of the subprocesses has abruptly died during map operation." "To debug the error, disable multiprocessing." ) finally: if not pool_changed: # we get the result in case there's an error to raise [async_result.get(timeout=0.05) for async_result in async_results]
datasets-main
src/datasets/utils/py_utils.py
import numpy as np def approximate_mode(class_counts, n_draws, rng): """Computes approximate mode of multivariate hypergeometric. This is an approximation to the mode of the multivariate hypergeometric given by class_counts and n_draws. It shouldn't be off by more than one. It is the mostly likely outcome of drawing n_draws many samples from the population given by class_counts. Args ---------- class_counts : ndarray of int Population per class. n_draws : int Number of draws (samples to draw) from the overall population. rng : random state Used to break ties. Returns ------- sampled_classes : ndarray of int Number of samples drawn from each class. np.sum(sampled_classes) == n_draws """ # this computes a bad approximation to the mode of the # multivariate hypergeometric given by class_counts and n_draws continuous = n_draws * class_counts / class_counts.sum() # floored means we don't overshoot n_samples, but probably undershoot floored = np.floor(continuous) # we add samples according to how much "left over" probability # they had, until we arrive at n_samples need_to_add = int(n_draws - floored.sum()) if need_to_add > 0: remainder = continuous - floored values = np.sort(np.unique(remainder))[::-1] # add according to remainder, but break ties # randomly to avoid biases for value in values: (inds,) = np.where(remainder == value) # if we need_to_add less than what's in inds # we draw randomly from them. # if we need to add more, we add them all and # go to the next value add_now = min(len(inds), need_to_add) inds = rng.choice(inds, size=add_now, replace=False) floored[inds] += 1 need_to_add -= add_now if need_to_add == 0: break return floored.astype(np.int64) def stratified_shuffle_split_generate_indices(y, n_train, n_test, rng, n_splits=10): """ Provides train/test indices to split data in train/test sets. It's reference is taken from StratifiedShuffleSplit implementation of scikit-learn library. Args ---------- n_train : int, represents the absolute number of train samples. n_test : int, represents the absolute number of test samples. random_state : int or RandomState instance, default=None Controls the randomness of the training and testing indices produced. Pass an int for reproducible output across multiple function calls. n_splits : int, default=10 Number of re-shuffling & splitting iterations. """ classes, y_indices = np.unique(y, return_inverse=True) n_classes = classes.shape[0] class_counts = np.bincount(y_indices) if np.min(class_counts) < 2: raise ValueError("Minimum class count error") if n_train < n_classes: raise ValueError( "The train_size = %d should be greater or " "equal to the number of classes = %d" % (n_train, n_classes) ) if n_test < n_classes: raise ValueError( "The test_size = %d should be greater or " "equal to the number of classes = %d" % (n_test, n_classes) ) class_indices = np.split(np.argsort(y_indices, kind="mergesort"), np.cumsum(class_counts)[:-1]) for _ in range(n_splits): n_i = approximate_mode(class_counts, n_train, rng) class_counts_remaining = class_counts - n_i t_i = approximate_mode(class_counts_remaining, n_test, rng) train = [] test = [] for i in range(n_classes): permutation = rng.permutation(class_counts[i]) perm_indices_class_i = class_indices[i].take(permutation, mode="clip") train.extend(perm_indices_class_i[: n_i[i]]) test.extend(perm_indices_class_i[n_i[i] : n_i[i] + t_i[i]]) train = rng.permutation(train) test = rng.permutation(test) yield train, test
datasets-main
src/datasets/utils/stratify.py
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def hf_hub_url(repo_id: str, path: str, revision: Optional[str] = None) -> str: if version.parse(hfh.__version__).release < version.parse("0.11.0").release: # old versions of hfh don't url-encode the file path path = quote(path) return hfh.hf_hub_url(repo_id, path, repo_type="dataset", revision=revision)
datasets-main
src/datasets/utils/hub.py
from importlib import import_module from .logging import get_logger logger = get_logger(__name__) class _PatchedModuleObj: """Set all the modules components as attributes of the _PatchedModuleObj object.""" def __init__(self, module, attrs=None): attrs = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__"): setattr(self, key, getattr(module, key)) self._original_module = module._original_module if isinstance(module, _PatchedModuleObj) else module class patch_submodule: """ Patch a submodule attribute of an object, by keeping all other submodules intact at all levels. Example:: >>> import importlib >>> from datasets.load import dataset_module_factory >>> from datasets.streaming import patch_submodule, xjoin >>> >>> dataset_module = dataset_module_factory("snli") >>> snli_module = importlib.import_module(dataset_module.module_path) >>> patcher = patch_submodule(snli_module, "os.path.join", xjoin) >>> patcher.start() >>> assert snli_module.os.path.join is xjoin """ _active_patches = [] def __init__(self, obj, target: str, new, attrs=None): self.obj = obj self.target = target self.new = new self.key = target.split(".")[0] self.original = {} self.attrs = attrs or [] def __enter__(self): *submodules, target_attr = self.target.split(".") # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(submodules)): try: submodule = import_module(".".join(submodules[: i + 1])) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): obj_attr = getattr(self.obj, attr) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(obj_attr, _PatchedModuleObj) and obj_attr._original_module is submodule) ): self.original[attr] = obj_attr # patch at top level setattr(self.obj, attr, _PatchedModuleObj(obj_attr, attrs=self.attrs)) patched = getattr(self.obj, attr) # construct lower levels patches for key in submodules[i + 1 :]: setattr(patched, key, _PatchedModuleObj(getattr(patched, key, None), attrs=self.attrs)) patched = getattr(patched, key) # finally set the target attribute setattr(patched, target_attr, self.new) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: attr_value = getattr(import_module(".".join(submodules)), target_attr) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj, attr) is attr_value: self.original[attr] = getattr(self.obj, attr) setattr(self.obj, attr, self.new) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" self.original[target_attr] = globals()["__builtins__"][target_attr] setattr(self.obj, target_attr, self.new) else: raise RuntimeError(f"Tried to patch attribute {target_attr} instead of a submodule.") def __exit__(self, *exc_info): for attr in list(self.original): setattr(self.obj, attr, self.original.pop(attr)) def start(self): """Activate a patch.""" self.__enter__() self._active_patches.append(self) def stop(self): """Stop an active patch.""" try: self._active_patches.remove(self) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
datasets-main
src/datasets/utils/patching.py
# This is free and unencumbered software released into the public domain. # # Anyone is free to copy, modify, publish, use, compile, sell, or # distribute this software, either in source code form or as a compiled # binary, for any purpose, commercial or non-commercial, and by any # means. # # In jurisdictions that recognize copyright laws, the author or authors # of this software dedicate any and all copyright interest in the # software to the public domain. We make this dedication for the benefit # of the public at large and to the detriment of our heirs and # successors. We intend this dedication to be an overt act of # relinquishment in perpetuity of all present and future rights to this # software under copyright law. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. # # For more information, please refer to <http://unlicense.org> """ A platform independent file lock that supports the with-statement. """ # Modules # ------------------------------------------------ import logging import os import threading import time try: import warnings except ImportError: warnings = None try: import msvcrt except ImportError: msvcrt = None try: import fcntl except ImportError: fcntl = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: TimeoutError = OSError # Data # ------------------------------------------------ __all__ = [ "Timeout", "BaseFileLock", "WindowsFileLock", "UnixFileLock", "SoftFileLock", "FileLock", ] __version__ = "3.0.12" _logger = None def logger(): """Returns the logger instance used in this module.""" global _logger _logger = _logger or logging.getLogger(__name__) return _logger # Exceptions # ------------------------------------------------ class Timeout(TimeoutError): """ Raised when the lock could not be acquired in *timeout* seconds. """ def __init__(self, lock_file): """ """ #: The path of the file lock. self.lock_file = lock_file return None def __str__(self): temp = f"The file lock '{self.lock_file}' could not be acquired." return temp # Classes # ------------------------------------------------ # This is a helper class which is returned by :meth:`BaseFileLock.acquire` # and wraps the lock to make sure __enter__ is not called twice when entering # the with statement. # If we would simply return *self*, the lock would be acquired again # in the *__enter__* method of the BaseFileLock, but not released again # automatically. # # :seealso: issue #37 (memory leak) class _Acquire_ReturnProxy: def __init__(self, lock): self.lock = lock return None def __enter__(self): return self.lock def __exit__(self, exc_type, exc_value, traceback): self.lock.release() return None class BaseFileLock: """ Implements the base class of a file lock. """ def __init__(self, lock_file, timeout=-1, max_filename_length=None): """ """ max_filename_length = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long lock_file = self.hash_filename_if_too_long(lock_file, max_filename_length) # The path to the lock file. self._lock_file = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. self._lock_file_fd = None # The default timeout value. self.timeout = timeout # We use this lock primarily for the lock counter. self._thread_lock = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. self._lock_counter = 0 return None @property def lock_file(self): """ The path to the lock file. """ return self._lock_file @property def timeout(self): """ You can set a default timeout for the filelock. It will be used as fallback value in the acquire method, if no timeout value (*None*) is given. If you want to disable the timeout, set it to a negative value. A timeout of 0 means, that there is exactly one attempt to acquire the file lock. *New in version 2.0.0* """ return self._timeout @timeout.setter def timeout(self, value): """ """ self._timeout = float(value) return None # Platform dependent locking # -------------------------------------------- def _acquire(self): """ Platform dependent. If the file lock could be acquired, self._lock_file_fd holds the file descriptor of the lock file. """ raise NotImplementedError() def _release(self): """ Releases the lock and sets self._lock_file_fd to None. """ raise NotImplementedError() # Platform independent methods # -------------------------------------------- @property def is_locked(self): """ True, if the object holds the file lock. This was previously a method and is now a property. """ return self._lock_file_fd is not None def acquire(self, timeout=None, poll_intervall=0.05): """ Acquires the file lock or fails with a :exc:`Timeout` error. ```py # You can use this method in the context manager (recommended) with lock.acquire(): pass # Or use an equivalent try-finally construct: lock.acquire() try: pass finally: lock.release() ``` :arg float timeout: The maximum time waited for the file lock. If ``timeout < 0``, there is no timeout and this method will block until the lock could be acquired. If ``timeout`` is None, the default :attr:`~timeout` is used. :arg float poll_intervall: We check once in *poll_intervall* seconds if we can acquire the file lock. :raises Timeout: if the lock could not be acquired in *timeout* seconds. This method returns now a *proxy* object instead of *self*, so that it can be used in a with statement without side effects. """ # Use the default timeout, if no timeout is provided. if timeout is None: timeout = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 lock_id = id(self) lock_filename = self._lock_file start_time = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"Attempting to acquire lock {lock_id} on {lock_filename}") self._acquire() if self.is_locked: logger().debug(f"Lock {lock_id} acquired on {lock_filename}") break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"Timeout on acquiring lock {lock_id} on {lock_filename}") raise Timeout(self._lock_file) else: logger().debug( f"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(poll_intervall) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: self._lock_counter = max(0, self._lock_counter - 1) raise return _Acquire_ReturnProxy(lock=self) def release(self, force=False): """ Releases the file lock. Please note, that the lock is only completly released, if the lock counter is 0. Also note, that the lock file itself is not automatically deleted. :arg bool force: If true, the lock counter is ignored and the lock is released in every case. """ with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: lock_id = id(self) lock_filename = self._lock_file logger().debug(f"Attempting to release lock {lock_id} on {lock_filename}") self._release() self._lock_counter = 0 logger().debug(f"Lock {lock_id} released on {lock_filename}") return None def __enter__(self): self.acquire() return self def __exit__(self, exc_type, exc_value, traceback): self.release() return None def __del__(self): self.release(force=True) return None def hash_filename_if_too_long(self, path: str, max_length: int) -> str: filename = os.path.basename(path) if len(filename) > max_length and max_length > 0: dirname = os.path.dirname(path) hashed_filename = str(hash(filename)) new_filename = filename[: max_length - len(hashed_filename) - 8] + "..." + hashed_filename + ".lock" return os.path.join(dirname, new_filename) else: return path # Windows locking mechanism # ~~~~~~~~~~~~~~~~~~~~~~~~~ class WindowsFileLock(BaseFileLock): """ Uses the :func:`msvcrt.locking` function to hard lock the lock file on windows systems. """ def __init__(self, lock_file, timeout=-1, max_filename_length=None): from .file_utils import relative_to_absolute_path super().__init__(lock_file, timeout=timeout, max_filename_length=max_filename_length) self._lock_file = "\\\\?\\" + relative_to_absolute_path(self.lock_file) def _acquire(self): open_mode = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: fd = os.open(self._lock_file, open_mode) except OSError: pass else: try: msvcrt.locking(fd, msvcrt.LK_NBLCK, 1) except OSError: os.close(fd) else: self._lock_file_fd = fd return None def _release(self): fd = self._lock_file_fd self._lock_file_fd = None msvcrt.locking(fd, msvcrt.LK_UNLCK, 1) os.close(fd) try: os.remove(self._lock_file) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None # Unix locking mechanism # ~~~~~~~~~~~~~~~~~~~~~~ class UnixFileLock(BaseFileLock): """ Uses the :func:`fcntl.flock` to hard lock the lock file on unix systems. """ def __init__(self, lock_file, timeout=-1, max_filename_length=None): max_filename_length = os.statvfs(os.path.dirname(lock_file)).f_namemax super().__init__(lock_file, timeout=timeout, max_filename_length=max_filename_length) def _acquire(self): open_mode = os.O_RDWR | os.O_CREAT | os.O_TRUNC fd = os.open(self._lock_file, open_mode) try: fcntl.flock(fd, fcntl.LOCK_EX | fcntl.LOCK_NB) except OSError: os.close(fd) else: self._lock_file_fd = fd return None def _release(self): # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition fd = self._lock_file_fd self._lock_file_fd = None fcntl.flock(fd, fcntl.LOCK_UN) os.close(fd) return None # Soft lock # ~~~~~~~~~ class SoftFileLock(BaseFileLock): """ Simply watches the existence of the lock file. """ def _acquire(self): open_mode = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: fd = os.open(self._lock_file, open_mode) except OSError: pass else: self._lock_file_fd = fd return None def _release(self): os.close(self._lock_file_fd) self._lock_file_fd = None try: os.remove(self._lock_file) # The file is already deleted and that's what we want. except OSError: pass return None # Platform filelock # ~~~~~~~~~~~~~~~~~ #: Alias for the lock, which should be used for the current platform. On #: Windows, this is an alias for :class:`WindowsFileLock`, on Unix for #: :class:`UnixFileLock` and otherwise for :class:`SoftFileLock`. FileLock = None if msvcrt: FileLock = WindowsFileLock elif fcntl: FileLock = UnixFileLock else: FileLock = SoftFileLock if warnings is not None: warnings.warn("only soft file lock is available")
datasets-main
src/datasets/utils/filelock.py
from typing import Callable def is_documented_by(function_with_docstring: Callable): """Decorator to share docstrings across common functions. Args: function_with_docstring (`Callable`): Name of the function with the docstring. """ def wrapper(target_function): target_function.__doc__ = function_with_docstring.__doc__ return target_function return wrapper
datasets-main
src/datasets/utils/doc_utils.py
""" Utilities for working with the local dataset cache. This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp Copyright by the AllenNLP authors. """ import copy import io import json import os import posixpath import re import shutil import sys import time import urllib import warnings from contextlib import closing, contextmanager from functools import partial from hashlib import sha256 from pathlib import Path from typing import List, Optional, Type, TypeVar, Union from urllib.parse import urljoin, urlparse import fsspec import huggingface_hub import requests from huggingface_hub import HfFolder from packaging import version from .. import __version__, config from ..download.download_config import DownloadConfig from . import logging from .extract import ExtractManager from .filelock import FileLock logger = logging.get_logger(__name__) # pylint: disable=invalid-name INCOMPLETE_SUFFIX = ".incomplete" T = TypeVar("T", str, Path) def init_hf_modules(hf_modules_cache: Optional[Union[Path, str]] = None) -> str: """ Add hf_modules_cache to the python path. By default hf_modules_cache='~/.cache/huggingface/modules'. It can also be set with the environment variable HF_MODULES_CACHE. This is used to add modules such as `datasets_modules` """ hf_modules_cache = hf_modules_cache if hf_modules_cache is not None else config.HF_MODULES_CACHE hf_modules_cache = str(hf_modules_cache) if hf_modules_cache not in sys.path: sys.path.append(hf_modules_cache) os.makedirs(hf_modules_cache, exist_ok=True) if not os.path.exists(os.path.join(hf_modules_cache, "__init__.py")): with open(os.path.join(hf_modules_cache, "__init__.py"), "w"): pass return hf_modules_cache def is_remote_url(url_or_filename: str) -> bool: return urlparse(url_or_filename).scheme != "" and not os.path.ismount(urlparse(url_or_filename).scheme + ":/") def is_local_path(url_or_filename: str) -> bool: # On unix the scheme of a local path is empty (for both absolute and relative), # while on windows the scheme is the drive name (ex: "c") for absolute paths. # for details on the windows behavior, see https://bugs.python.org/issue42215 return urlparse(url_or_filename).scheme == "" or os.path.ismount(urlparse(url_or_filename).scheme + ":/") def is_relative_path(url_or_filename: str) -> bool: return urlparse(url_or_filename).scheme == "" and not os.path.isabs(url_or_filename) def relative_to_absolute_path(path: T) -> T: """Convert relative path to absolute path.""" abs_path_str = os.path.abspath(os.path.expanduser(os.path.expandvars(str(path)))) return Path(abs_path_str) if isinstance(path, Path) else abs_path_str def hf_bucket_url(identifier: str, filename: str, use_cdn=False, dataset=True) -> str: if dataset: endpoint = config.CLOUDFRONT_DATASETS_DISTRIB_PREFIX if use_cdn else config.S3_DATASETS_BUCKET_PREFIX else: endpoint = config.CLOUDFRONT_METRICS_DISTRIB_PREFIX if use_cdn else config.S3_METRICS_BUCKET_PREFIX return "/".join((endpoint, identifier, filename)) def head_hf_s3( identifier: str, filename: str, use_cdn=False, dataset=True, max_retries=0 ) -> Union[requests.Response, Exception]: return http_head( hf_bucket_url(identifier=identifier, filename=filename, use_cdn=use_cdn, dataset=dataset), max_retries=max_retries, ) def hf_github_url(path: str, name: str, dataset=True, revision: Optional[str] = None) -> str: default_revision = "main" if version.parse(__version__).is_devrelease else __version__ revision = revision or default_revision if dataset: return config.REPO_DATASETS_URL.format(revision=revision, path=path, name=name) else: return config.REPO_METRICS_URL.format(revision=revision, path=path, name=name) def url_or_path_join(base_name: str, *pathnames: str) -> str: if is_remote_url(base_name): return posixpath.join(base_name, *(str(pathname).replace(os.sep, "/").lstrip("/") for pathname in pathnames)) else: return Path(base_name, *pathnames).as_posix() def url_or_path_parent(url_or_path: str) -> str: if is_remote_url(url_or_path): return url_or_path[: url_or_path.rindex("/")] else: return os.path.dirname(url_or_path) def hash_url_to_filename(url, etag=None): """ Convert `url` into a hashed filename in a repeatable way. If `etag` is specified, append its hash to the url's, delimited by a period. If the url ends with .h5 (Keras HDF5 weights) adds '.h5' to the name so that TF 2.0 can identify it as a HDF5 file (see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1380) """ url_bytes = url.encode("utf-8") url_hash = sha256(url_bytes) filename = url_hash.hexdigest() if etag: etag_bytes = etag.encode("utf-8") etag_hash = sha256(etag_bytes) filename += "." + etag_hash.hexdigest() if url.endswith(".py"): filename += ".py" return filename def cached_path( url_or_filename, download_config=None, **download_kwargs, ) -> str: """ Given something that might be a URL (or might be a local path), determine which. If it's a URL, download the file and cache it, and return the path to the cached file. If it's already a local path, make sure the file exists and then return the path. Return: Local path (string) Raises: FileNotFoundError: in case of non-recoverable file (non-existent or no cache on disk) ConnectionError: in case of unreachable url and no cache on disk ValueError: if it couldn't parse the url or filename correctly requests.exceptions.ConnectionError: in case of internet connection issue """ if download_config is None: download_config = DownloadConfig(**download_kwargs) cache_dir = download_config.cache_dir or config.DOWNLOADED_DATASETS_PATH if isinstance(cache_dir, Path): cache_dir = str(cache_dir) if isinstance(url_or_filename, Path): url_or_filename = str(url_or_filename) if is_remote_url(url_or_filename): # URL, so get it from the cache (downloading if necessary) output_path = get_from_cache( url_or_filename, cache_dir=cache_dir, force_download=download_config.force_download, proxies=download_config.proxies, resume_download=download_config.resume_download, user_agent=download_config.user_agent, local_files_only=download_config.local_files_only, use_etag=download_config.use_etag, max_retries=download_config.max_retries, token=download_config.token, ignore_url_params=download_config.ignore_url_params, storage_options=download_config.storage_options, download_desc=download_config.download_desc, ) elif os.path.exists(url_or_filename): # File, and it exists. output_path = url_or_filename elif is_local_path(url_or_filename): # File, but it doesn't exist. raise FileNotFoundError(f"Local file {url_or_filename} doesn't exist") else: # Something unknown raise ValueError(f"unable to parse {url_or_filename} as a URL or as a local path") if output_path is None: return output_path if download_config.extract_compressed_file: output_path = ExtractManager(cache_dir=download_config.cache_dir).extract( output_path, force_extract=download_config.force_extract ) return output_path def get_datasets_user_agent(user_agent: Optional[Union[str, dict]] = None) -> str: ua = f"datasets/{__version__}" ua += f"; python/{config.PY_VERSION}" ua += f"; huggingface_hub/{huggingface_hub.__version__}" ua += f"; pyarrow/{config.PYARROW_VERSION}" if config.TORCH_AVAILABLE: ua += f"; torch/{config.TORCH_VERSION}" if config.TF_AVAILABLE: ua += f"; tensorflow/{config.TF_VERSION}" if config.JAX_AVAILABLE: ua += f"; jax/{config.JAX_VERSION}" if config.BEAM_AVAILABLE: ua += f"; apache_beam/{config.BEAM_VERSION}" if isinstance(user_agent, dict): ua += f"; {'; '.join(f'{k}/{v}' for k, v in user_agent.items())}" elif isinstance(user_agent, str): ua += "; " + user_agent return ua def get_authentication_headers_for_url( url: str, token: Optional[Union[str, bool]] = None, use_auth_token: Optional[Union[str, bool]] = "deprecated" ) -> dict: """Handle the HF authentication""" if use_auth_token != "deprecated": warnings.warn( "'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n" f"You can remove this warning by passing 'token={use_auth_token}' instead.", FutureWarning, ) token = use_auth_token headers = {} if url.startswith(config.HF_ENDPOINT): if token is False: token = None elif isinstance(token, str): token = token else: token = HfFolder.get_token() if token: headers["authorization"] = f"Bearer {token}" return headers class OfflineModeIsEnabled(ConnectionError): pass def _raise_if_offline_mode_is_enabled(msg: Optional[str] = None): """Raise an OfflineModeIsEnabled error (subclass of ConnectionError) if HF_DATASETS_OFFLINE is True.""" if config.HF_DATASETS_OFFLINE: raise OfflineModeIsEnabled( "Offline mode is enabled." if msg is None else "Offline mode is enabled. " + str(msg) ) def _retry( func, func_args: Optional[tuple] = None, func_kwargs: Optional[dict] = None, exceptions: Type[requests.exceptions.RequestException] = requests.exceptions.RequestException, status_codes: Optional[List[int]] = None, max_retries: int = 0, base_wait_time: float = 0.5, max_wait_time: float = 2, ): func_args = func_args or () func_kwargs = func_kwargs or {} retry = 0 while True: try: return func(*func_args, **func_kwargs) except exceptions as err: if retry >= max_retries or (status_codes and err.response.status_code not in status_codes): raise err else: sleep_time = min(max_wait_time, base_wait_time * 2**retry) # Exponential backoff logger.info(f"{func} timed out, retrying in {sleep_time}s... [{retry/max_retries}]") time.sleep(sleep_time) retry += 1 def _request_with_retry( method: str, url: str, max_retries: int = 0, base_wait_time: float = 0.5, max_wait_time: float = 2, timeout: float = 10.0, **params, ) -> requests.Response: """Wrapper around requests to retry in case it fails with a ConnectTimeout, with exponential backoff. Note that if the environment variable HF_DATASETS_OFFLINE is set to 1, then a OfflineModeIsEnabled error is raised. Args: method (str): HTTP method, such as 'GET' or 'HEAD'. url (str): The URL of the resource to fetch. max_retries (int): Maximum number of retries, defaults to 0 (no retries). base_wait_time (float): Duration (in seconds) to wait before retrying the first time. Wait time between retries then grows exponentially, capped by max_wait_time. max_wait_time (float): Maximum amount of time between two retries, in seconds. **params (additional keyword arguments): Params to pass to :obj:`requests.request`. """ _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") tries, success = 0, False while not success: tries += 1 try: response = requests.request(method=method.upper(), url=url, timeout=timeout, **params) success = True except (requests.exceptions.ConnectTimeout, requests.exceptions.ConnectionError) as err: if tries > max_retries: raise err else: logger.info(f"{method} request to {url} timed out, retrying... [{tries/max_retries}]") sleep_time = min(max_wait_time, base_wait_time * 2 ** (tries - 1)) # Exponential backoff time.sleep(sleep_time) return response def fsspec_head(url, storage_options=None): _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") fs, _, paths = fsspec.get_fs_token_paths(url, storage_options=storage_options) if len(paths) > 1: raise ValueError(f"HEAD can be called with at most one path but was called with {paths}") return fs.info(paths[0]) class TqdmCallback(fsspec.callbacks.TqdmCallback): def __init__(self, tqdm_kwargs=None, *args, **kwargs): super().__init__(tqdm_kwargs, *args, **kwargs) self._tqdm = logging # replace tqdm.tqdm by datasets.logging.tqdm def fsspec_get(url, temp_file, storage_options=None, desc=None): _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") fs, _, paths = fsspec.get_fs_token_paths(url, storage_options=storage_options) if len(paths) > 1: raise ValueError(f"GET can be called with at most one path but was called with {paths}") callback = TqdmCallback( tqdm_kwargs={ "desc": desc or "Downloading", "disable": not logging.is_progress_bar_enabled(), "unit": "B", "unit_scale": True, } ) fs.get_file(paths[0], temp_file.name, callback=callback) def ftp_head(url, timeout=10.0): _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") try: with closing(urllib.request.urlopen(url, timeout=timeout)) as r: r.read(1) except Exception: return False return True def ftp_get(url, temp_file, timeout=10.0): _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") try: logger.info(f"Getting through FTP {url} into {temp_file.name}") with closing(urllib.request.urlopen(url, timeout=timeout)) as r: shutil.copyfileobj(r, temp_file) except urllib.error.URLError as e: raise ConnectionError(e) from None def http_get( url, temp_file, proxies=None, resume_size=0, headers=None, cookies=None, timeout=100.0, max_retries=0, desc=None ): headers = copy.deepcopy(headers) or {} headers["user-agent"] = get_datasets_user_agent(user_agent=headers.get("user-agent")) if resume_size > 0: headers["Range"] = f"bytes={resume_size:d}-" response = _request_with_retry( method="GET", url=url, stream=True, proxies=proxies, headers=headers, cookies=cookies, max_retries=max_retries, timeout=timeout, ) if response.status_code == 416: # Range not satisfiable return content_length = response.headers.get("Content-Length") total = resume_size + int(content_length) if content_length is not None else None with logging.tqdm( unit="B", unit_scale=True, total=total, initial=resume_size, desc=desc or "Downloading", disable=not logging.is_progress_bar_enabled(), ) as progress: for chunk in response.iter_content(chunk_size=1024): progress.update(len(chunk)) temp_file.write(chunk) def http_head( url, proxies=None, headers=None, cookies=None, allow_redirects=True, timeout=10.0, max_retries=0 ) -> requests.Response: headers = copy.deepcopy(headers) or {} headers["user-agent"] = get_datasets_user_agent(user_agent=headers.get("user-agent")) response = _request_with_retry( method="HEAD", url=url, proxies=proxies, headers=headers, cookies=cookies, allow_redirects=allow_redirects, timeout=timeout, max_retries=max_retries, ) return response def request_etag( url: str, token: Optional[Union[str, bool]] = None, use_auth_token: Optional[Union[str, bool]] = "deprecated" ) -> Optional[str]: if use_auth_token != "deprecated": warnings.warn( "'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n" f"You can remove this warning by passing 'token={use_auth_token}' instead.", FutureWarning, ) token = use_auth_token if urlparse(url).scheme not in ("http", "https"): return None headers = get_authentication_headers_for_url(url, token=token) response = http_head(url, headers=headers, max_retries=3) response.raise_for_status() etag = response.headers.get("ETag") if response.ok else None return etag def get_from_cache( url, cache_dir=None, force_download=False, proxies=None, etag_timeout=100, resume_download=False, user_agent=None, local_files_only=False, use_etag=True, max_retries=0, token=None, use_auth_token="deprecated", ignore_url_params=False, storage_options=None, download_desc=None, ) -> str: """ Given a URL, look for the corresponding file in the local cache. If it's not there, download it. Then return the path to the cached file. Return: Local path (string) Raises: FileNotFoundError: in case of non-recoverable file (non-existent or no cache on disk) ConnectionError: in case of unreachable url and no cache on disk """ if use_auth_token != "deprecated": warnings.warn( "'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n" f"You can remove this warning by passing 'token={use_auth_token}' instead.", FutureWarning, ) token = use_auth_token if cache_dir is None: cache_dir = config.HF_DATASETS_CACHE if isinstance(cache_dir, Path): cache_dir = str(cache_dir) os.makedirs(cache_dir, exist_ok=True) if ignore_url_params: # strip all query parameters and #fragments from the URL cached_url = urljoin(url, urlparse(url).path) else: cached_url = url # additional parameters may be added to the given URL connected = False response = None cookies = None etag = None head_error = None scheme = None # Try a first time to file the file on the local file system without eTag (None) # if we don't ask for 'force_download' then we spare a request filename = hash_url_to_filename(cached_url, etag=None) cache_path = os.path.join(cache_dir, filename) if os.path.exists(cache_path) and not force_download and not use_etag: return cache_path # Prepare headers for authentication headers = get_authentication_headers_for_url(url, token=token) if user_agent is not None: headers["user-agent"] = user_agent # We don't have the file locally or we need an eTag if not local_files_only: scheme = urlparse(url).scheme if scheme == "ftp": connected = ftp_head(url) elif scheme not in ("http", "https"): response = fsspec_head(url, storage_options=storage_options) # s3fs uses "ETag", gcsfs uses "etag" etag = (response.get("ETag", None) or response.get("etag", None)) if use_etag else None connected = True try: response = http_head( url, allow_redirects=True, proxies=proxies, timeout=etag_timeout, max_retries=max_retries, headers=headers, ) if response.status_code == 200: # ok etag = response.headers.get("ETag") if use_etag else None for k, v in response.cookies.items(): # In some edge cases, we need to get a confirmation token if k.startswith("download_warning") and "drive.google.com" in url: url += "&confirm=" + v cookies = response.cookies connected = True # Fix Google Drive URL to avoid Virus scan warning if "drive.google.com" in url and "confirm=" not in url: url += "&confirm=t" # In some edge cases, head request returns 400 but the connection is actually ok elif ( (response.status_code == 400 and "firebasestorage.googleapis.com" in url) or (response.status_code == 405 and "drive.google.com" in url) or ( response.status_code == 403 and ( re.match(r"^https?://github.com/.*?/.*?/releases/download/.*?/.*?$", url) or re.match(r"^https://.*?s3.*?amazonaws.com/.*?$", response.url) ) ) or (response.status_code == 403 and "ndownloader.figstatic.com" in url) ): connected = True logger.info(f"Couldn't get ETag version for url {url}") elif response.status_code == 401 and config.HF_ENDPOINT in url and token is None: raise ConnectionError( f"Unauthorized for URL {url}. Please use the parameter `token=True` after logging in with `huggingface-cli login`" ) except (OSError, requests.exceptions.Timeout) as e: # not connected head_error = e pass # connected == False = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if not connected: if os.path.exists(cache_path) and not force_download: return cache_path if local_files_only: raise FileNotFoundError( f"Cannot find the requested files in the cached path at {cache_path} and outgoing traffic has been" " disabled. To enable file online look-ups, set 'local_files_only' to False." ) elif response is not None and response.status_code == 404: raise FileNotFoundError(f"Couldn't find file at {url}") _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") if head_error is not None: raise ConnectionError(f"Couldn't reach {url} ({repr(head_error)})") elif response is not None: raise ConnectionError(f"Couldn't reach {url} (error {response.status_code})") else: raise ConnectionError(f"Couldn't reach {url}") # Try a second time filename = hash_url_to_filename(cached_url, etag) cache_path = os.path.join(cache_dir, filename) if os.path.exists(cache_path) and not force_download: return cache_path # From now on, connected is True. # Prevent parallel downloads of the same file with a lock. lock_path = cache_path + ".lock" with FileLock(lock_path): # Retry in case previously locked processes just enter after the precedent process releases the lock if os.path.exists(cache_path) and not force_download: return cache_path incomplete_path = cache_path + ".incomplete" @contextmanager def temp_file_manager(mode="w+b"): with open(incomplete_path, mode) as f: yield f resume_size = 0 if resume_download: temp_file_manager = partial(temp_file_manager, mode="a+b") if os.path.exists(incomplete_path): resume_size = os.stat(incomplete_path).st_size # Download to temporary file, then copy to cache path once finished. # Otherwise, you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: logger.info(f"{url} not found in cache or force_download set to True, downloading to {temp_file.name}") # GET file object if scheme == "ftp": ftp_get(url, temp_file) elif scheme not in ("http", "https"): fsspec_get(url, temp_file, storage_options=storage_options, desc=download_desc) else: http_get( url, temp_file, proxies=proxies, resume_size=resume_size, headers=headers, cookies=cookies, max_retries=max_retries, desc=download_desc, ) logger.info(f"storing {url} in cache at {cache_path}") shutil.move(temp_file.name, cache_path) umask = os.umask(0o666) os.umask(umask) os.chmod(cache_path, 0o666 & ~umask) logger.info(f"creating metadata file for {cache_path}") meta = {"url": url, "etag": etag} meta_path = cache_path + ".json" with open(meta_path, "w", encoding="utf-8") as meta_file: json.dump(meta, meta_file) return cache_path def add_start_docstrings(*docstr): def docstring_decorator(fn): fn.__doc__ = "".join(docstr) + "\n\n" + (fn.__doc__ if fn.__doc__ is not None else "") return fn return docstring_decorator def add_end_docstrings(*docstr): def docstring_decorator(fn): fn.__doc__ = (fn.__doc__ if fn.__doc__ is not None else "") + "\n\n" + "".join(docstr) return fn return docstring_decorator def estimate_dataset_size(paths): return sum(path.stat().st_size for path in paths) def readline(f: io.RawIOBase): # From: https://github.com/python/cpython/blob/d27e2f4d118e7a9909b6a3e5da06c5ff95806a85/Lib/_pyio.py#L525 res = bytearray() while True: b = f.read(1) if not b: break res += b if res.endswith(b"\n"): break return bytes(res)
datasets-main
src/datasets/utils/file_utils.py
import os from typing import Dict, List, Tuple, TypeVar, Union T = TypeVar("T") ListLike = Union[List[T], Tuple[T, ...]] NestedDataStructureLike = Union[T, List[T], Dict[str, T]] PathLike = Union[str, bytes, os.PathLike]
datasets-main
src/datasets/utils/typing.py
import bz2 import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger logger = get_logger(__name__) class ExtractManager: def __init__(self, cache_dir: Optional[str] = None): self.extract_dir = ( os.path.join(cache_dir, config.EXTRACTED_DATASETS_DIR) if cache_dir else config.EXTRACTED_DATASETS_PATH ) self.extractor = Extractor def _get_output_path(self, path: str) -> str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" abs_path = os.path.abspath(path) return os.path.join(self.extract_dir, hash_url_to_filename(abs_path)) def _do_extract(self, output_path: str, force_extract: bool) -> bool: return force_extract or ( not os.path.isfile(output_path) and not (os.path.isdir(output_path) and os.listdir(output_path)) ) def extract(self, input_path: str, force_extract: bool = False) -> str: extractor_format = self.extractor.infer_extractor_format(input_path) if not extractor_format: return input_path output_path = self._get_output_path(input_path) if self._do_extract(output_path, force_extract): self.extractor.extract(input_path, output_path, extractor_format) return output_path class BaseExtractor(ABC): @classmethod @abstractmethod def is_extractable(cls, path: Union[Path, str], **kwargs) -> bool: ... @staticmethod @abstractmethod def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None: ... class MagicNumberBaseExtractor(BaseExtractor, ABC): magic_numbers: List[bytes] = [] @staticmethod def read_magic_number(path: Union[Path, str], magic_number_length: int): with open(path, "rb") as f: return f.read(magic_number_length) @classmethod def is_extractable(cls, path: Union[Path, str], magic_number: bytes = b"") -> bool: if not magic_number: magic_number_length = max(len(cls_magic_number) for cls_magic_number in cls.magic_numbers) try: magic_number = cls.read_magic_number(path, magic_number_length) except OSError: return False return any(magic_number.startswith(cls_magic_number) for cls_magic_number in cls.magic_numbers) class TarExtractor(BaseExtractor): @classmethod def is_extractable(cls, path: Union[Path, str], **kwargs) -> bool: return tarfile.is_tarfile(path) @staticmethod def safemembers(members, output_path): """ Fix for CVE-2007-4559 Desc: Directory traversal vulnerability in the (1) extract and (2) extractall functions in the tarfile module in Python allows user-assisted remote attackers to overwrite arbitrary files via a .. (dot dot) sequence in filenames in a TAR archive, a related issue to CVE-2001-1267. See: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4559 From: https://stackoverflow.com/a/10077309 """ def resolved(path: str) -> str: return os.path.realpath(os.path.abspath(path)) def badpath(path: str, base: str) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(base, path)).startswith(base) def badlink(info, base: str) -> bool: # Links are interpreted relative to the directory containing the link tip = resolved(os.path.join(base, os.path.dirname(info.name))) return badpath(info.linkname, base=tip) base = resolved(output_path) for finfo in members: if badpath(finfo.name, base): logger.error(f"Extraction of {finfo.name} is blocked (illegal path)") elif finfo.issym() and badlink(finfo, base): logger.error(f"Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}") elif finfo.islnk() and badlink(finfo, base): logger.error(f"Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}") else: yield finfo @staticmethod def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None: os.makedirs(output_path, exist_ok=True) tar_file = tarfile.open(input_path) tar_file.extractall(output_path, members=TarExtractor.safemembers(tar_file, output_path)) tar_file.close() class GzipExtractor(MagicNumberBaseExtractor): magic_numbers = [b"\x1F\x8B"] @staticmethod def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None: with gzip.open(input_path, "rb") as gzip_file: with open(output_path, "wb") as extracted_file: shutil.copyfileobj(gzip_file, extracted_file) class ZipExtractor(MagicNumberBaseExtractor): magic_numbers = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def is_extractable(cls, path: Union[Path, str], magic_number: bytes = b"") -> bool: if super().is_extractable(path, magic_number=magic_number): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(path, "rb") as fp: endrec = _EndRecData(fp) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET]) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: data = fp.read(sizeCentralDir) # CD is where we expect it to be if len(data) == sizeCentralDir: centdir = struct.unpack(structCentralDir, data) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None: os.makedirs(output_path, exist_ok=True) with zipfile.ZipFile(input_path, "r") as zip_file: zip_file.extractall(output_path) zip_file.close() class XzExtractor(MagicNumberBaseExtractor): magic_numbers = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None: with lzma.open(input_path) as compressed_file: with open(output_path, "wb") as extracted_file: shutil.copyfileobj(compressed_file, extracted_file) class RarExtractor(MagicNumberBaseExtractor): magic_numbers = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None: if not config.RARFILE_AVAILABLE: raise ImportError("Please pip install rarfile") import rarfile os.makedirs(output_path, exist_ok=True) rf = rarfile.RarFile(input_path) rf.extractall(output_path) rf.close() class ZstdExtractor(MagicNumberBaseExtractor): magic_numbers = [b"\x28\xb5\x2F\xFD"] @staticmethod def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None: if not config.ZSTANDARD_AVAILABLE: raise ImportError("Please pip install zstandard") import zstandard as zstd dctx = zstd.ZstdDecompressor() with open(input_path, "rb") as ifh, open(output_path, "wb") as ofh: dctx.copy_stream(ifh, ofh) class Bzip2Extractor(MagicNumberBaseExtractor): magic_numbers = [b"\x42\x5A\x68"] @staticmethod def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None: with bz2.open(input_path, "rb") as compressed_file: with open(output_path, "wb") as extracted_file: shutil.copyfileobj(compressed_file, extracted_file) class SevenZipExtractor(MagicNumberBaseExtractor): magic_numbers = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None: if not config.PY7ZR_AVAILABLE: raise ImportError("Please pip install py7zr") import py7zr os.makedirs(output_path, exist_ok=True) with py7zr.SevenZipFile(input_path, "r") as archive: archive.extractall(output_path) class Lz4Extractor(MagicNumberBaseExtractor): magic_numbers = [b"\x04\x22\x4D\x18"] @staticmethod def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None: if not config.LZ4_AVAILABLE: raise ImportError("Please pip install lz4") import lz4.frame with lz4.frame.open(input_path, "rb") as compressed_file: with open(output_path, "wb") as extracted_file: shutil.copyfileobj(compressed_file, extracted_file) class Extractor: # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) extractors: Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": Bzip2Extractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": Lz4Extractor, # <Added version="2.4.0"/> } @classmethod def _get_magic_number_max_length(cls): return max( len(extractor_magic_number) for extractor in cls.extractors.values() if issubclass(extractor, MagicNumberBaseExtractor) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def _read_magic_number(path: Union[Path, str], magic_number_length: int): try: return MagicNumberBaseExtractor.read_magic_number(path, magic_number_length=magic_number_length) except OSError: return b"" @classmethod def is_extractable(cls, path: Union[Path, str], return_extractor: bool = False) -> bool: warnings.warn( "Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'infer_extractor_format' instead.", category=FutureWarning, ) extractor_format = cls.infer_extractor_format(path) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def infer_extractor_format(cls, path: Union[Path, str]) -> str: # <Added version="2.4.0"/> magic_number_max_length = cls._get_magic_number_max_length() magic_number = cls._read_magic_number(path, magic_number_max_length) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(path, magic_number=magic_number): return extractor_format @classmethod def extract( cls, input_path: Union[Path, str], output_path: Union[Path, str], extractor_format: Optional[str] = None, # <Added version="2.4.0"/> extractor: Optional[BaseExtractor] = "deprecated", ) -> None: os.makedirs(os.path.dirname(output_path), exist_ok=True) # Prevent parallel extractions lock_path = str(Path(output_path).with_suffix(".lock")) with FileLock(lock_path): shutil.rmtree(output_path, ignore_errors=True) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(extractor_format, str): # passed as positional arg warnings.warn( "Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'extractor_format' instead.", category=FutureWarning, ) extractor = extractor if extractor != "deprecated" else extractor_format else: extractor = cls.extractors[extractor_format] return extractor.extract(input_path, output_path) else: warnings.warn( "Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an " "exception in 3.0.0.", category=FutureWarning, ) for extractor in cls.extractors.values(): if extractor.is_extractable(input_path): return extractor.extract(input_path, output_path)
datasets-main
src/datasets/utils/extract.py
# Copyright 2022 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TF-specific utils import.""" import os import warnings from functools import partial from math import ceil from uuid import uuid4 import numpy as np import pyarrow as pa from multiprocess import get_context try: from multiprocess.shared_memory import SharedMemory except ImportError: SharedMemory = None # Version checks should prevent this being called on older Python versions from .. import config def minimal_tf_collate_fn(features): if isinstance(features, dict): # case batch_size=None: nothing to collate return features elif config.TF_AVAILABLE: import tensorflow as tf else: raise ImportError("Called a Tensorflow-specific function but Tensorflow is not installed.") first = features[0] batch = {} for k, v in first.items(): if isinstance(v, np.ndarray): batch[k] = np.stack([f[k] for f in features]) elif isinstance(v, tf.Tensor): batch[k] = tf.stack([f[k] for f in features]) else: batch[k] = np.array([f[k] for f in features]) return batch def minimal_tf_collate_fn_with_renaming(features): batch = minimal_tf_collate_fn(features) if "label" in batch: batch["labels"] = batch["label"] del batch["label"] return batch def is_numeric_pa_type(pa_type): if pa.types.is_list(pa_type): return is_numeric_pa_type(pa_type.value_type) return pa.types.is_integer(pa_type) or pa.types.is_floating(pa_type) or pa.types.is_decimal(pa_type) def is_numeric_feature(feature): from .. import ClassLabel, Sequence, Value from ..features.features import _ArrayXD if isinstance(feature, Sequence): return is_numeric_feature(feature.feature) elif isinstance(feature, list): return is_numeric_feature(feature[0]) elif isinstance(feature, _ArrayXD): return is_numeric_pa_type(feature().storage_dtype) elif isinstance(feature, Value): return is_numeric_pa_type(feature()) elif isinstance(feature, ClassLabel): return True else: return False def np_get_batch( indices, dataset, cols_to_retain, collate_fn, collate_fn_args, columns_to_np_types, return_dict=False ): if not isinstance(indices, np.ndarray): indices = indices.numpy() is_batched = True # Optimization - if we're loading a sequential batch, do it with slicing instead of a list of indices if isinstance(indices, np.integer): batch = dataset[indices.item()] is_batched = False elif np.all(np.diff(indices) == 1): batch = dataset[indices[0] : indices[-1] + 1] elif isinstance(indices, np.ndarray): batch = dataset[indices] else: raise RuntimeError("Unexpected type for indices: {}".format(type(indices))) if cols_to_retain is not None: batch = { key: value for key, value in batch.items() if key in cols_to_retain or key in ("label", "label_ids", "labels") } if is_batched: actual_size = len(list(batch.values())[0]) # Get the length of one of the arrays, assume all same # Our collators expect a list of dicts, not a dict of lists/arrays, so we invert batch = [{key: value[i] for key, value in batch.items()} for i in range(actual_size)] batch = collate_fn(batch, **collate_fn_args) if return_dict: out_batch = {} for col, cast_dtype in columns_to_np_types.items(): # In case the collate_fn returns something strange array = np.array(batch[col]) array = array.astype(cast_dtype) out_batch[col] = array else: out_batch = [] for col, cast_dtype in columns_to_np_types.items(): # In case the collate_fn returns something strange array = np.array(batch[col]) array = array.astype(cast_dtype) out_batch.append(array) return out_batch def dataset_to_tf( dataset, cols_to_retain, collate_fn, collate_fn_args, columns_to_np_types, output_signature, shuffle, batch_size, drop_remainder, ): """Create a tf.data.Dataset from the underlying Dataset. This is a single-process method - the multiprocess equivalent is multiprocess_dataset_to_tf. Args: dataset (`Dataset`): Dataset to wrap with tf.data.Dataset. cols_to_retain (`List[str]`): Dataset column(s) to load in the tf.data.Dataset. It is acceptable to include column names that are created by the `collate_fn` and that do not exist in the original dataset. collate_fn(`Callable`): A function or callable object (such as a `DataCollator`) that will collate lists of samples into a batch. collate_fn_args (`Dict`): A `dict` of keyword arguments to be passed to the `collate_fn`. Can be empty. columns_to_np_types (`Dict[str, np.dtype]`): A `dict` mapping column names to numpy dtypes. output_signature (`Dict[str, tf.TensorSpec]`): A `dict` mapping column names to `tf.TensorSpec` objects. shuffle(`bool`): Shuffle the dataset order when loading. Recommended True for training, False for validation/evaluation. batch_size (`int`, default `None`): Size of batches to load from the dataset. Defaults to `None`, which implies that the dataset won't be batched, but the returned dataset can be batched later with `tf_dataset.batch(batch_size)`. drop_remainder(`bool`, default `None`): Drop the last incomplete batch when loading. If not provided, defaults to the same setting as shuffle. Returns: `tf.data.Dataset` """ if config.TF_AVAILABLE: import tensorflow as tf else: raise ImportError("Called a Tensorflow-specific function but Tensorflow is not installed.") # TODO Matt: When our minimum Python version is 3.8 or higher, we can delete all of this and move everything # to the NumPy multiprocessing path. if hasattr(tf, "random_index_shuffle"): random_index_shuffle = tf.random_index_shuffle elif hasattr(tf.random.experimental, "index_shuffle"): random_index_shuffle = tf.random.experimental.index_shuffle else: if len(dataset) > 10_000_000: warnings.warn( "to_tf_dataset() can be memory-inefficient on versions of TensorFlow older than 2.9. " "If you are iterating over a dataset with a very large number of samples, consider " "upgrading to TF >= 2.9." ) random_index_shuffle = None getter_fn = partial( np_get_batch, dataset=dataset, cols_to_retain=cols_to_retain, collate_fn=collate_fn, collate_fn_args=collate_fn_args, columns_to_np_types=columns_to_np_types, return_dict=False, ) # This works because dictionaries always output in the same order tout = [tf.dtypes.as_dtype(dtype) for dtype in columns_to_np_types.values()] @tf.function(input_signature=[tf.TensorSpec(None, tf.int64)]) def fetch_function(indices): output = tf.py_function( getter_fn, inp=[indices], Tout=tout, ) return {key: output[i] for i, key in enumerate(columns_to_np_types.keys())} tf_dataset = tf.data.Dataset.range(len(dataset)) if shuffle and random_index_shuffle is not None: base_seed = tf.fill((3,), value=tf.cast(-1, dtype=tf.int64)) def scan_random_index(state, index): if tf.reduce_all(state == -1): # This generates a new random seed once per epoch only, # to ensure that we iterate over each sample exactly once per epoch state = tf.random.uniform(shape=(3,), maxval=2**62, dtype=tf.int64) shuffled_index = random_index_shuffle(index=index, seed=state, max_index=len(dataset) - 1) return state, shuffled_index tf_dataset = tf_dataset.scan(base_seed, scan_random_index) elif shuffle: tf_dataset = tf_dataset.shuffle(tf_dataset.cardinality()) if batch_size is not None: tf_dataset = tf_dataset.batch(batch_size, drop_remainder=drop_remainder) tf_dataset = tf_dataset.map(fetch_function) if batch_size is not None: def ensure_shapes(input_dict): return {key: tf.ensure_shape(val, output_signature[key].shape) for key, val in input_dict.items()} else: # Ensure shape but remove batch dimension of output_signature[key].shape def ensure_shapes(input_dict): return {key: tf.ensure_shape(val, output_signature[key].shape[1:]) for key, val in input_dict.items()} return tf_dataset.map(ensure_shapes) class SharedMemoryContext: # This is a context manager for creating shared memory that ensures cleanup happens even if a process is interrupted # The process that creates shared memory is always the one responsible for unlinking it in the end def __init__(self): self.created_shms = [] self.opened_shms = [] def get_shm(self, name, size, create): shm = SharedMemory(size=int(size), name=name, create=create) if create: # We only unlink the ones we created in this context self.created_shms.append(shm) else: # If we didn't create it, we only close it when done, we don't unlink it self.opened_shms.append(shm) return shm def get_array(self, name, shape, dtype, create): shm = self.get_shm(name=name, size=np.prod(shape) * np.dtype(dtype).itemsize, create=create) return np.ndarray(shape, dtype=dtype, buffer=shm.buf) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): for shm in self.created_shms: shm.close() shm.unlink() for shm in self.opened_shms: shm.close() class NumpyMultiprocessingGenerator: def __init__( self, dataset, cols_to_retain, collate_fn, collate_fn_args, columns_to_np_types, output_signature, shuffle, batch_size, drop_remainder, num_workers, ): self.dataset = dataset self.cols_to_retain = cols_to_retain self.collate_fn = collate_fn self.collate_fn_args = collate_fn_args self.string_columns = [col for col, dtype in columns_to_np_types.items() if dtype in (np.unicode_, np.str_)] # Strings will be converted to arrays of single unicode chars, so that we can have a constant itemsize self.columns_to_np_types = { col: dtype if col not in self.string_columns else np.dtype("U1") for col, dtype in columns_to_np_types.items() } self.output_signature = output_signature self.shuffle = shuffle self.batch_size = batch_size self.drop_remainder = drop_remainder self.num_workers = num_workers # Because strings are converted to characters, we need to add one extra dimension to the shape self.columns_to_ranks = { col: int(spec.shape.rank) if col not in self.string_columns else int(spec.shape.rank) + 1 for col, spec in output_signature.items() } def __iter__(self): # Make sure we only spawn workers if they have work to do num_workers = min(self.num_workers, int(ceil(len(self.dataset) / self.batch_size))) # Do the shuffling in iter so that it's done at the start of each epoch per_worker_batches, final_batch, final_batch_worker = self.distribute_batches( self.dataset, self.batch_size, self.drop_remainder, num_workers, self.shuffle ) ctx = get_context("spawn") names = [] shape_arrays = [] workers = [] array_ready_events = [ctx.Event() for _ in range(num_workers)] array_loaded_events = [ctx.Event() for _ in range(num_workers)] base_args = { "dataset": self.dataset, "cols_to_retain": self.cols_to_retain, "collate_fn": self.collate_fn, "collate_fn_args": self.collate_fn_args, "columns_to_np_types": self.columns_to_np_types, "columns_to_ranks": self.columns_to_ranks, "string_columns": self.string_columns, } with SharedMemoryContext() as shm_ctx: for i in range(num_workers): worker_random_id = str(uuid4()) worker_name = f"dw_{i}_{worker_random_id}"[:10] names.append(worker_name) worker_shape_arrays = { col: shm_ctx.get_array(f"{worker_name}_{col}_shape", shape=(rank,), dtype=np.int64, create=True) for col, rank in self.columns_to_ranks.items() } shape_arrays.append(worker_shape_arrays) worker_indices = per_worker_batches[i] if i == final_batch_worker and final_batch is not None: final_batch_arg = final_batch else: final_batch_arg = None worker_kwargs = { "worker_name": worker_name, "indices": worker_indices, "extra_batch": final_batch_arg, "array_ready_event": array_ready_events[i], "array_loaded_event": array_loaded_events[i], **base_args, } worker = ctx.Process(target=self.worker_loop, kwargs=worker_kwargs, daemon=True) worker.start() workers.append(worker) end_signal_received = False while not end_signal_received: for i in range(num_workers): if not array_ready_events[i].wait(timeout=60): raise TimeoutError("Data loading worker timed out!") array_ready_events[i].clear() array_shapes = shape_arrays[i] if any(np.any(shape < 0) for shape in array_shapes.values()): # Child processes send negative array shapes to indicate # that no more data is going to be sent end_signal_received = True break # Matt: Because array shapes are variable we recreate the shared memory each iteration. # I suspect repeatedly opening lots of shared memory is the bottleneck for the parent process. # A future optimization, at the cost of some code complexity, could be to reuse shared memory # between iterations, but this would require knowing in advance the maximum size, or having # a system to only create a new memory block when a new maximum size is seen. # Another potential optimization would be to figure out which memory copies are necessary, # or whether we can yield objects straight out of shared memory. with SharedMemoryContext() as batch_shm_ctx: # This memory context only lasts long enough to copy everything out of the batch arrays = { col: batch_shm_ctx.get_array( f"{names[i]}_{col}", shape=shape, dtype=self.columns_to_np_types[col], create=False, ) for col, shape in array_shapes.items() } # Copy everything out of shm because the memory # will be unlinked by the child process at some point arrays = {col: np.copy(arr) for col, arr in arrays.items()} # Now we convert any unicode char arrays to strings for string_col in self.string_columns: arrays[string_col] = ( arrays[string_col].view(f"U{arrays[string_col].shape[-1]}").squeeze(-1) ) yield arrays array_loaded_events[i].set() # Now we just do some cleanup # Shared memory is cleaned up by the context manager, so we just make sure workers finish for worker in workers: worker.join() def __call__(self): return self @staticmethod def worker_loop( dataset, cols_to_retain, collate_fn, collate_fn_args, columns_to_np_types, columns_to_ranks, string_columns, indices, extra_batch, worker_name, array_ready_event, array_loaded_event, ): os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" if config.TF_AVAILABLE: import tensorflow as tf else: raise ImportError("Called a Tensorflow-specific function but Tensorflow is not installed.") tf.config.set_visible_devices([], "GPU") # Make sure workers don't try to allocate GPU memory def send_batch_to_parent(indices): batch = np_get_batch( indices=indices, dataset=dataset, cols_to_retain=cols_to_retain, collate_fn=collate_fn, collate_fn_args=collate_fn_args, columns_to_np_types=columns_to_np_types, return_dict=True, ) # Now begins the fun part where we start shovelling shared memory at the parent process out_arrays = {} with SharedMemoryContext() as batch_shm_ctx: # The batch shared memory context exists only as long as it takes for the parent process # to read everything, after which it cleans everything up again for col, cast_dtype in columns_to_np_types.items(): # Everything has to be np.array for this to work, even if the collate_fn is giving us tf.Tensor array = batch[col] if col in string_columns: # We can't send unicode arrays over shared memory, so we convert to single chars ("U1") # which have a fixed width of 4 bytes. The parent process will convert these back to strings. array = array.view("U1").reshape(array.shape + (-1,)) shape_arrays[col][:] = array.shape out_arrays[col] = batch_shm_ctx.get_array( f"{worker_name}_{col}", shape=array.shape, dtype=cast_dtype, create=True ) out_arrays[col][:] = array array_ready_event.set() array_loaded_event.wait() array_loaded_event.clear() with SharedMemoryContext() as shm_ctx: shape_arrays = { col: shm_ctx.get_array(f"{worker_name}_{col}_shape", shape=(rank,), dtype=np.int64, create=False) for col, rank in columns_to_ranks.items() } for batch in indices: send_batch_to_parent(batch) if extra_batch is not None: send_batch_to_parent(extra_batch) # Now we send a batsignal to the parent process that we're done for col, array in shape_arrays.items(): array[:] = -1 array_ready_event.set() @staticmethod def distribute_batches(dataset, batch_size, drop_remainder, num_workers, shuffle): indices = np.arange(len(dataset)) if shuffle: np.random.shuffle(indices) num_samples = len(indices) # We distribute the batches so that reading from the workers in round-robin order yields the exact # order specified in indices. This is only important when shuffle is False, but we do it regardless. incomplete_batch_cutoff = num_samples - (num_samples % batch_size) indices, last_incomplete_batch = np.split(indices, [incomplete_batch_cutoff]) if drop_remainder or len(last_incomplete_batch) == 0: last_incomplete_batch = None indices = indices.reshape(-1, batch_size) num_batches = len(indices) final_batches_cutoff = num_batches - (num_batches % num_workers) indices, final_batches = np.split(indices, [final_batches_cutoff]) indices = indices.reshape(-1, num_workers, batch_size) per_worker_indices = np.split(indices, indices.shape[1], axis=1) per_worker_indices = [np.squeeze(worker_indices, 1) for worker_indices in per_worker_indices] # Distribute the final batches to the first workers for i in range(len(final_batches)): # len(final_batches) can be zero, and is always less than num_workers per_worker_indices[i] = np.concatenate([per_worker_indices[i], final_batches[i].reshape(1, -1)], axis=0) # Add the last incomplete batch to the next worker, which might be the first worker if last_incomplete_batch is not None: incomplete_batch_worker_idx = len(final_batches) else: incomplete_batch_worker_idx = None return per_worker_indices, last_incomplete_batch, incomplete_batch_worker_idx def multiprocess_dataset_to_tf( dataset, cols_to_retain, collate_fn, collate_fn_args, columns_to_np_types, output_signature, shuffle, batch_size, drop_remainder, num_workers, ): """Create a tf.data.Dataset from the underlying Dataset. This is a multi-process method - the single-process equivalent is dataset_to_tf. Args: dataset (`Dataset`): Dataset to wrap with tf.data.Dataset. cols_to_retain (`List[str]`): Dataset column(s) to load in the tf.data.Dataset. It is acceptable to include column names that are created by the `collate_fn` and that do not exist in the original dataset. collate_fn(`Callable`): A function or callable object (such as a `DataCollator`) that will collate lists of samples into a batch. collate_fn_args (`Dict`): A `dict` of keyword arguments to be passed to the `collate_fn`. Can be empty. columns_to_np_types (`Dict[str, np.dtype]`): A `dict` mapping column names to numpy dtypes. output_signature (`Dict[str, tf.TensorSpec]`): A `dict` mapping column names to `tf.TensorSpec` objects. shuffle(`bool`): Shuffle the dataset order when loading. Recommended True for training, False for validation/evaluation. batch_size (`int`, default `None`): Size of batches to load from the dataset. Defaults to `None`, which implies that the dataset won't be batched, but the returned dataset can be batched later with `tf_dataset.batch(batch_size)`. drop_remainder(`bool`, default `None`): Drop the last incomplete batch when loading. If not provided, defaults to the same setting as shuffle. num_workers (`int`): Number of workers to use for loading the dataset. Should be >= 1. Returns: `tf.data.Dataset` """ if config.TF_AVAILABLE: import tensorflow as tf else: raise ImportError("Called a Tensorflow-specific function but Tensorflow is not installed.") data_generator = NumpyMultiprocessingGenerator( dataset=dataset, cols_to_retain=cols_to_retain, collate_fn=collate_fn, collate_fn_args=collate_fn_args, columns_to_np_types=columns_to_np_types, output_signature=output_signature, shuffle=shuffle, batch_size=batch_size, drop_remainder=drop_remainder, num_workers=num_workers, ) tf_dataset = tf.data.Dataset.from_generator(data_generator, output_signature=output_signature) if drop_remainder: dataset_length = int(len(dataset) // batch_size) else: dataset_length = int(ceil(len(dataset) / batch_size)) return tf_dataset.apply(tf.data.experimental.assert_cardinality(dataset_length))
datasets-main
src/datasets/utils/tf_utils.py
import enum import os from hashlib import sha256 from typing import Optional from .. import config from .logging import get_logger logger = get_logger(__name__) class VerificationMode(enum.Enum): """`Enum` that specifies which verification checks to run. The default mode is `BASIC_CHECKS`, which will perform only rudimentary checks to avoid slowdowns when generating/downloading a dataset for the first time. The verification modes: | | Verification checks | |---------------------------|------------------------------------------------------------------------------ | | `ALL_CHECKS` | Split checks, uniqueness of the keys yielded in case of the GeneratorBuilder | | | and the validity (number of files, checksums, etc.) of downloaded files | | `BASIC_CHECKS` (default) | Same as `ALL_CHECKS` but without checking downloaded files | | `NO_CHECKS` | None | """ ALL_CHECKS = "all_checks" BASIC_CHECKS = "basic_checks" NO_CHECKS = "no_checks" class ChecksumVerificationException(Exception): """Exceptions during checksums verifications of downloaded files.""" class UnexpectedDownloadedFile(ChecksumVerificationException): """Some downloaded files were not expected.""" class ExpectedMoreDownloadedFiles(ChecksumVerificationException): """Some files were supposed to be downloaded but were not.""" class NonMatchingChecksumError(ChecksumVerificationException): """The downloaded file checksum don't match the expected checksum.""" def verify_checksums(expected_checksums: Optional[dict], recorded_checksums: dict, verification_name=None): if expected_checksums is None: logger.info("Unable to verify checksums.") return if len(set(expected_checksums) - set(recorded_checksums)) > 0: raise ExpectedMoreDownloadedFiles(str(set(expected_checksums) - set(recorded_checksums))) if len(set(recorded_checksums) - set(expected_checksums)) > 0: raise UnexpectedDownloadedFile(str(set(recorded_checksums) - set(expected_checksums))) bad_urls = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] for_verification_name = " for " + verification_name if verification_name is not None else "" if len(bad_urls) > 0: raise NonMatchingChecksumError( f"Checksums didn't match{for_verification_name}:\n" f"{bad_urls}\n" "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name) class SplitsVerificationException(Exception): """Exceptions during splis verifications""" class UnexpectedSplits(SplitsVerificationException): """The expected splits of the downloaded file is missing.""" class ExpectedMoreSplits(SplitsVerificationException): """Some recorded splits are missing.""" class NonMatchingSplitsSizesError(SplitsVerificationException): """The splits sizes don't match the expected splits sizes.""" def verify_splits(expected_splits: Optional[dict], recorded_splits: dict): if expected_splits is None: logger.info("Unable to verify splits sizes.") return if len(set(expected_splits) - set(recorded_splits)) > 0: raise ExpectedMoreSplits(str(set(expected_splits) - set(recorded_splits))) if len(set(recorded_splits) - set(expected_splits)) > 0: raise UnexpectedSplits(str(set(recorded_splits) - set(expected_splits))) bad_splits = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(bad_splits) > 0: raise NonMatchingSplitsSizesError(str(bad_splits)) logger.info("All the splits matched successfully.") def get_size_checksum_dict(path: str, record_checksum: bool = True) -> dict: """Compute the file size and the sha256 checksum of a file""" if record_checksum: m = sha256() with open(path, "rb") as f: for chunk in iter(lambda: f.read(1 << 20), b""): m.update(chunk) checksum = m.hexdigest() else: checksum = None return {"num_bytes": os.path.getsize(path), "checksum": checksum} def is_small_dataset(dataset_size): """Check if `dataset_size` is smaller than `config.IN_MEMORY_MAX_SIZE`. Args: dataset_size (int): Dataset size in bytes. Returns: bool: Whether `dataset_size` is smaller than `config.IN_MEMORY_MAX_SIZE`. """ if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
datasets-main
src/datasets/utils/info_utils.py
import enum import inspect import warnings from functools import wraps from typing import Callable, Optional from .logging import get_logger _emitted_deprecation_warnings = set() logger = get_logger(__name__) def deprecated(help_message: Optional[str] = None): """Decorator to mark a class or a function as deprecated. Args: help_message (:obj:`str`, optional): An optional message to guide the user on how to switch to non-deprecated usage of the library. """ def decorator(deprecated_class_or_function: Callable): global _emitted_deprecation_warnings if inspect.isclass(deprecated_class_or_function): deprecated_function = deprecated_class_or_function.__init__ name = deprecated_class_or_function.__name__ else: deprecated_function = deprecated_class_or_function name = deprecated_function.__name__ # Support deprecating __init__ class method: class name instead name = name if name != "__init__" else deprecated_function.__qualname__.split(".")[-2] warning_msg = ( f"{name} is deprecated and will be removed in the next major version of datasets." + f" {help_message}" if help_message else "" ) @wraps(deprecated_function) def wrapper(*args, **kwargs): func_hash = hash(deprecated_function) if func_hash not in _emitted_deprecation_warnings: warnings.warn(warning_msg, category=FutureWarning, stacklevel=2) _emitted_deprecation_warnings.add(func_hash) return deprecated_function(*args, **kwargs) wrapper._decorator_name_ = "deprecated" if inspect.isclass(deprecated_class_or_function): deprecated_class_or_function.__init__ = wrapper return deprecated_class_or_function else: return wrapper return decorator class OnAccess(enum.EnumMeta): """ Enum metaclass that calls a user-specified function whenever a member is accessed. """ def __getattribute__(cls, name): obj = super().__getattribute__(name) if isinstance(obj, enum.Enum) and obj._on_access: obj._on_access() return obj def __getitem__(cls, name): member = super().__getitem__(name) if member._on_access: member._on_access() return member def __call__(cls, value, names=None, *, module=None, qualname=None, type=None, start=1): obj = super().__call__(value, names, module=module, qualname=qualname, type=type, start=start) if isinstance(obj, enum.Enum) and obj._on_access: obj._on_access() return obj class DeprecatedEnum(enum.Enum, metaclass=OnAccess): """ Enum class that calls `deprecate` method whenever a member is accessed. """ def __new__(cls, value): member = object.__new__(cls) member._value_ = value member._on_access = member.deprecate return member @property def help_message(self): return "" def deprecate(self): help_message = f" {self.help_message}" if self.help_message else "" warnings.warn( f"'{self.__objclass__.__name__}' is deprecated and will be removed in the next major version of datasets." + help_message, FutureWarning, stacklevel=3, )
datasets-main
src/datasets/utils/deprecation_utils.py
datasets-main
src/datasets/utils/resources/__init__.py
# Copyright 2020 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Mock download manager interface.""" import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version logger = get_logger(__name__) class MockDownloadManager: dummy_file_name = "dummy_data" datasets_scripts_dir = "datasets" is_streaming = False def __init__( self, dataset_name: str, config: str, version: Union[Version, str], cache_dir: Optional[str] = None, use_local_dummy_data: bool = False, load_existing_dummy_data: bool = True, download_callbacks: Optional[List[Callable]] = None, ): self.downloaded_size = 0 self.dataset_name = dataset_name self.cache_dir = cache_dir self.use_local_dummy_data = use_local_dummy_data self.config = config # download_callbacks take a single url as input self.download_callbacks: List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root self.load_existing_dummy_data = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general self.version_name = str(version) # to be downloaded self._dummy_file = None self._bucket_url = None @property def dummy_file(self): if self._dummy_file is None: self._dummy_file = self.download_dummy_data() return self._dummy_file @property def dummy_data_folder(self): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy", self.config.name, self.version_name) # structure is dummy / version_name return os.path.join("dummy", self.version_name) @property def dummy_zip_file(self): return os.path.join(self.dummy_data_folder, "dummy_data.zip") def download_dummy_data(self): path_to_dummy_data_dir = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) local_path = cached_path( path_to_dummy_data_dir, cache_dir=self.cache_dir, extract_compressed_file=True, force_extract=True ) return os.path.join(local_path, self.dummy_file_name) @property def local_path_to_dummy_data(self): return os.path.join(self.datasets_scripts_dir, self.dataset_name, self.dummy_zip_file) @property def github_path_to_dummy_data(self): if self._bucket_url is None: self._bucket_url = hf_github_url(self.dataset_name, self.dummy_zip_file.replace(os.sep, "/")) return self._bucket_url @property def manual_dir(self): # return full path if its a dir if os.path.isdir(self.dummy_file): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep, "/").split("/")[:-1]) # this function has to be in the manager under this name so that testing works def download_and_extract(self, data_url, *args): if self.load_existing_dummy_data: # dummy data is downloaded and tested dummy_file = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned dummy_file = self.dummy_file_name # special case when data_url is a dict if isinstance(data_url, dict): return self.create_dummy_data_dict(dummy_file, data_url) elif isinstance(data_url, (list, tuple)): return self.create_dummy_data_list(dummy_file, data_url) else: return self.create_dummy_data_single(dummy_file, data_url) # this function has to be in the manager under this name so that testing works def download(self, data_url, *args): return self.download_and_extract(data_url) # this function has to be in the manager under this name so that testing works def download_custom(self, data_url, custom_download): return self.download_and_extract(data_url) # this function has to be in the manager under this name so that testing works def extract(self, path, *args, **kwargs): return path # this function has to be in the manager under this name so that testing works def get_recorded_sizes_checksums(self): return {} def create_dummy_data_dict(self, path_to_dummy_data, data_url): dummy_data_dict = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(single_urls, list): for single_url in single_urls: download_callback(single_url) else: single_url = single_urls download_callback(single_url) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(single_urls, list): value = [os.path.join(path_to_dummy_data, urllib.parse.quote_plus(Path(x).name)) for x in single_urls] else: single_url = single_urls value = os.path.join(path_to_dummy_data, urllib.parse.quote_plus(Path(single_url).name)) dummy_data_dict[key] = value # make sure that values are unique if all(isinstance(i, str) for i in dummy_data_dict.values()) and len(set(dummy_data_dict.values())) < len( dummy_data_dict.values() ): # append key to value to make its name unique dummy_data_dict = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def create_dummy_data_list(self, path_to_dummy_data, data_url): dummy_data_list = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one is_tf_records = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}", url)) for url in data_url) is_pubmed_records = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed") for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): data_url = [data_url[0]] * len(data_url) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(single_url) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus value = os.path.join(path_to_dummy_data, urllib.parse.quote_plus(single_url.split("/")[-1])) dummy_data_list.append(value) return dummy_data_list def create_dummy_data_single(self, path_to_dummy_data, data_url): for download_callback in self.download_callbacks: download_callback(data_url) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus value = os.path.join(path_to_dummy_data, urllib.parse.quote_plus(data_url.split("/")[-1])) if os.path.exists(value) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def delete_extracted_files(self): pass def manage_extracted_files(self): pass def iter_archive(self, path): def _iter_archive_members(path): # this preserves the order of the members inside the ZIP archive dummy_parent_path = Path(self.dummy_file).parent relative_path = path.relative_to(dummy_parent_path) with ZipFile(self.local_path_to_dummy_data) as zip_file: members = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix()): yield dummy_parent_path.joinpath(member) path = Path(path) file_paths = _iter_archive_members(path) if self.use_local_dummy_data else path.rglob("*") for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__")): yield file_path.relative_to(path).as_posix(), file_path.open("rb") def iter_files(self, paths): if not isinstance(paths, list): paths = [paths] for path in paths: if os.path.isfile(path): yield path else: for dirpath, dirnames, filenames in os.walk(path): if os.path.basename(dirpath).startswith((".", "__")): continue dirnames.sort() for filename in sorted(filenames): if filename.startswith((".", "__")): continue yield os.path.join(dirpath, filename)
datasets-main
src/datasets/download/mock_download_manager.py
import copy import warnings from dataclasses import InitVar, dataclass, field from pathlib import Path from typing import Any, Dict, Optional, Union from .. import config @dataclass class DownloadConfig: """Configuration for our cached path manager. Attributes: cache_dir (`str` or `Path`, *optional*): Specify a cache directory to save the file to (overwrite the default cache dir). force_download (`bool`, defaults to `False`): If `True`, re-dowload the file even if it's already cached in the cache dir. resume_download (`bool`, defaults to `False`): If `True`, resume the download if an incompletely received file is found. proxies (`dict`, *optional*): user_agent (`str`, *optional*): Optional string or dict that will be appended to the user-agent on remote requests. extract_compressed_file (`bool`, defaults to `False`): If `True` and the path point to a zip or tar file, extract the compressed file in a folder along the archive. force_extract (`bool`, defaults to `False`): If `True` when `extract_compressed_file` is `True` and the archive was already extracted, re-extract the archive and override the folder where it was extracted. delete_extracted (`bool`, defaults to `False`): Whether to delete (or keep) the extracted files. use_etag (`bool`, defaults to `True`): Whether to use the ETag HTTP response header to validate the cached files. num_proc (`int`, *optional*): The number of processes to launch to download the files in parallel. max_retries (`int`, default to `1`): The number of times to retry an HTTP request if it fails. token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `~/.huggingface`. use_auth_token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `~/.huggingface`. <Deprecated version="2.14.0"> `use_auth_token` was deprecated in favor of `token` in version 2.14.0 and will be removed in 3.0.0. </Deprecated> ignore_url_params (`bool`, defaults to `False`): Whether to strip all query parameters and fragments from the download URL before using it for caching the file. storage_options (`dict`, *optional*): Key/value pairs to be passed on to the dataset file-system backend, if any. download_desc (`str`, *optional*): A description to be displayed alongside with the progress bar while downloading the files. """ cache_dir: Optional[Union[str, Path]] = None force_download: bool = False resume_download: bool = False local_files_only: bool = False proxies: Optional[Dict] = None user_agent: Optional[str] = None extract_compressed_file: bool = False force_extract: bool = False delete_extracted: bool = False use_etag: bool = True num_proc: Optional[int] = None max_retries: int = 1 token: Optional[Union[str, bool]] = None use_auth_token: InitVar[Optional[Union[str, bool]]] = "deprecated" ignore_url_params: bool = False storage_options: Dict[str, Any] = field(default_factory=dict) download_desc: Optional[str] = None def __post_init__(self, use_auth_token): if use_auth_token != "deprecated": warnings.warn( "'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n" f"You can remove this warning by passing 'token={use_auth_token}' instead.", FutureWarning, ) self.token = use_auth_token if "hf" not in self.storage_options: self.storage_options["hf"] = {"token": self.token, "endpoint": config.HF_ENDPOINT} def copy(self) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(v) for k, v in self.__dict__.items()}) def __setattr__(self, name, value): if name == "token" and getattr(self, "storage_options", None) is not None: if "hf" not in self.storage_options: self.storage_options["hf"] = {"token": value, "endpoint": config.HF_ENDPOINT} elif getattr(self.storage_options["hf"], "token", None) is None: self.storage_options["hf"]["token"] = value super().__setattr__(name, value)
datasets-main
src/datasets/download/download_config.py
__all__ = [ "DownloadConfig", "DownloadManager", "DownloadMode", "StreamingDownloadManager", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
datasets-main
src/datasets/download/__init__.py
# Copyright 2020 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Download manager interface.""" import enum import io import os import posixpath import tarfile import warnings import zipfile from datetime import datetime from functools import partial from itertools import chain from typing import Callable, Dict, Generator, Iterable, List, Optional, Tuple, Union from .. import config from ..utils.deprecation_utils import DeprecatedEnum, deprecated from ..utils.file_utils import cached_path, get_from_cache, hash_url_to_filename, is_relative_path, url_or_path_join from ..utils.info_utils import get_size_checksum_dict from ..utils.logging import get_logger, is_progress_bar_enabled, tqdm from ..utils.py_utils import NestedDataStructure, map_nested, size_str from .download_config import DownloadConfig logger = get_logger(__name__) BASE_KNOWN_EXTENSIONS = [ "txt", "csv", "json", "jsonl", "tsv", "conll", "conllu", "orig", "parquet", "pkl", "pickle", "rel", "xml", ] MAGIC_NUMBER_TO_COMPRESSION_PROTOCOL = { bytes.fromhex("504B0304"): "zip", bytes.fromhex("504B0506"): "zip", # empty archive bytes.fromhex("504B0708"): "zip", # spanned archive bytes.fromhex("425A68"): "bz2", bytes.fromhex("1F8B"): "gzip", bytes.fromhex("FD377A585A00"): "xz", bytes.fromhex("04224D18"): "lz4", bytes.fromhex("28B52FFD"): "zstd", } MAGIC_NUMBER_TO_UNSUPPORTED_COMPRESSION_PROTOCOL = { b"Rar!": "rar", } MAGIC_NUMBER_MAX_LENGTH = max( len(magic_number) for magic_number in chain(MAGIC_NUMBER_TO_COMPRESSION_PROTOCOL, MAGIC_NUMBER_TO_UNSUPPORTED_COMPRESSION_PROTOCOL) ) class DownloadMode(enum.Enum): """`Enum` for how to treat pre-existing downloads and data. The default mode is `REUSE_DATASET_IF_EXISTS`, which will reuse both raw downloads and the prepared dataset if they exist. The generations modes: | | Downloads | Dataset | |-------------------------------------|-----------|---------| | `REUSE_DATASET_IF_EXISTS` (default) | Reuse | Reuse | | `REUSE_CACHE_IF_EXISTS` | Reuse | Fresh | | `FORCE_REDOWNLOAD` | Fresh | Fresh | """ REUSE_DATASET_IF_EXISTS = "reuse_dataset_if_exists" REUSE_CACHE_IF_EXISTS = "reuse_cache_if_exists" FORCE_REDOWNLOAD = "force_redownload" class GenerateMode(DeprecatedEnum): REUSE_DATASET_IF_EXISTS = "reuse_dataset_if_exists" REUSE_CACHE_IF_EXISTS = "reuse_cache_if_exists" FORCE_REDOWNLOAD = "force_redownload" @property def help_message(self): return "Use 'DownloadMode' instead." def _get_path_extension(path: str) -> str: # Get extension: train.json.gz -> gz extension = path.split(".")[-1] # Remove query params ("dl=1", "raw=true"): gz?dl=1 -> gz # Remove shards infos (".txt_1", ".txt-00000-of-00100"): txt_1 -> txt for symb in "?-_": extension = extension.split(symb)[0] return extension def _get_extraction_protocol_with_magic_number(f) -> Optional[str]: """read the magic number from a file-like object and return the compression protocol""" # Check if the file object is seekable even before reading the magic number (to avoid https://bugs.python.org/issue26440) try: f.seek(0) except (AttributeError, io.UnsupportedOperation): return None magic_number = f.read(MAGIC_NUMBER_MAX_LENGTH) f.seek(0) for i in range(MAGIC_NUMBER_MAX_LENGTH): compression = MAGIC_NUMBER_TO_COMPRESSION_PROTOCOL.get(magic_number[: MAGIC_NUMBER_MAX_LENGTH - i]) if compression is not None: return compression compression = MAGIC_NUMBER_TO_UNSUPPORTED_COMPRESSION_PROTOCOL.get(magic_number[: MAGIC_NUMBER_MAX_LENGTH - i]) if compression is not None: raise NotImplementedError(f"Compression protocol '{compression}' not implemented.") def _get_extraction_protocol(path: str) -> Optional[str]: path = str(path) extension = _get_path_extension(path) # TODO(mariosasko): The below check will be useful once we can preserve the original extension in the new cache layout (use the `filename` parameter of `hf_hub_download`) if ( extension in BASE_KNOWN_EXTENSIONS or extension in ["tgz", "tar"] or path.endswith((".tar.gz", ".tar.bz2", ".tar.xz")) ): return None with open(path, "rb") as f: return _get_extraction_protocol_with_magic_number(f) class _IterableFromGenerator(Iterable): """Utility class to create an iterable from a generator function, in order to reset the generator when needed.""" def __init__(self, generator: Callable, *args, **kwargs): self.generator = generator self.args = args self.kwargs = kwargs def __iter__(self): yield from self.generator(*self.args, **self.kwargs) class ArchiveIterable(_IterableFromGenerator): """An iterable of (path, fileobj) from a TAR archive, used by `iter_archive`""" @staticmethod def _iter_tar(f): stream = tarfile.open(fileobj=f, mode="r|*") for tarinfo in stream: file_path = tarinfo.name if not tarinfo.isreg(): continue if file_path is None: continue if os.path.basename(file_path).startswith((".", "__")): # skipping hidden files continue file_obj = stream.extractfile(tarinfo) yield file_path, file_obj stream.members = [] del stream @staticmethod def _iter_zip(f): zipf = zipfile.ZipFile(f) for member in zipf.infolist(): file_path = member.filename if member.is_dir(): continue if file_path is None: continue if os.path.basename(file_path).startswith((".", "__")): # skipping hidden files continue file_obj = zipf.open(member) yield file_path, file_obj @classmethod def _iter_from_fileobj(cls, f) -> Generator[Tuple, None, None]: compression = _get_extraction_protocol_with_magic_number(f) if compression == "zip": yield from cls._iter_zip(f) else: yield from cls._iter_tar(f) @classmethod def _iter_from_path(cls, urlpath: str) -> Generator[Tuple, None, None]: compression = _get_extraction_protocol(urlpath) with open(urlpath, "rb") as f: if compression == "zip": yield from cls._iter_zip(f) else: yield from cls._iter_tar(f) @classmethod def from_buf(cls, fileobj) -> "ArchiveIterable": return cls(cls._iter_from_fileobj, fileobj) @classmethod def from_path(cls, urlpath_or_buf) -> "ArchiveIterable": return cls(cls._iter_from_path, urlpath_or_buf) class FilesIterable(_IterableFromGenerator): """An iterable of paths from a list of directories or files""" @classmethod def _iter_from_paths(cls, urlpaths: Union[str, List[str]]) -> Generator[str, None, None]: if not isinstance(urlpaths, list): urlpaths = [urlpaths] for urlpath in urlpaths: if os.path.isfile(urlpath): yield urlpath else: for dirpath, dirnames, filenames in os.walk(urlpath): # in-place modification to prune the search dirnames[:] = sorted([dirname for dirname in dirnames if not dirname.startswith((".", "__"))]) if os.path.basename(dirpath).startswith((".", "__")): # skipping hidden directories continue for filename in sorted(filenames): if filename.startswith((".", "__")): # skipping hidden files continue yield os.path.join(dirpath, filename) @classmethod def from_paths(cls, urlpaths) -> "FilesIterable": return cls(cls._iter_from_paths, urlpaths) class DownloadManager: is_streaming = False def __init__( self, dataset_name: Optional[str] = None, data_dir: Optional[str] = None, download_config: Optional[DownloadConfig] = None, base_path: Optional[str] = None, record_checksums=True, ): """Download manager constructor. Args: data_dir: can be used to specify a manual directory to get the files from. dataset_name (`str`): name of dataset this instance will be used for. If provided, downloads will contain which datasets they were used for. download_config (`DownloadConfig`): to specify the cache directory and other download options base_path (`str`): base path that is used when relative paths are used to download files. This can be a remote url. record_checksums (`bool`, defaults to `True`): Whether to record the checksums of the downloaded files. If None, the value is inferred from the builder. """ self._dataset_name = dataset_name self._data_dir = data_dir self._base_path = base_path or os.path.abspath(".") # To record what is being used: {url: {num_bytes: int, checksum: str}} self._recorded_sizes_checksums: Dict[str, Dict[str, Optional[Union[int, str]]]] = {} self.record_checksums = record_checksums self.download_config = download_config or DownloadConfig() self.downloaded_paths = {} self.extracted_paths = {} @property def manual_dir(self): return self._data_dir @property def downloaded_size(self): """Returns the total size of downloaded files.""" return sum(checksums_dict["num_bytes"] for checksums_dict in self._recorded_sizes_checksums.values()) @staticmethod def ship_files_with_pipeline(downloaded_path_or_paths, pipeline): """Ship the files using Beam FileSystems to the pipeline temp dir. Args: downloaded_path_or_paths (`str` or `list[str]` or `dict[str, str]`): Nested structure containing the downloaded path(s). pipeline ([`utils.beam_utils.BeamPipeline`]): Apache Beam Pipeline. Returns: `str` or `list[str]` or `dict[str, str]` """ from ..utils.beam_utils import upload_local_to_remote remote_dir = pipeline._options.get_all_options().get("temp_location") if remote_dir is None: raise ValueError("You need to specify 'temp_location' in PipelineOptions to upload files") def upload(local_file_path): remote_file_path = posixpath.join( remote_dir, config.DOWNLOADED_DATASETS_DIR, os.path.basename(local_file_path) ) logger.info( f"Uploading {local_file_path} ({size_str(os.path.getsize(local_file_path))}) to {remote_file_path}." ) upload_local_to_remote(local_file_path, remote_file_path) return remote_file_path uploaded_path_or_paths = map_nested( lambda local_file_path: upload(local_file_path), downloaded_path_or_paths, disable_tqdm=not is_progress_bar_enabled(), ) return uploaded_path_or_paths def _record_sizes_checksums(self, url_or_urls: NestedDataStructure, downloaded_path_or_paths: NestedDataStructure): """Record size/checksum of downloaded files.""" delay = 5 for url, path in tqdm( list(zip(url_or_urls.flatten(), downloaded_path_or_paths.flatten())), delay=delay, desc="Computing checksums", disable=not is_progress_bar_enabled(), ): # call str to support PathLike objects self._recorded_sizes_checksums[str(url)] = get_size_checksum_dict( path, record_checksum=self.record_checksums ) @deprecated("Use `.download`/`.download_and_extract` with `fsspec` URLs instead.") def download_custom(self, url_or_urls, custom_download): """ Download given urls(s) by calling `custom_download`. Args: url_or_urls (`str` or `list` or `dict`): URL or `list` or `dict` of URLs to download and extract. Each URL is a `str`. custom_download (`Callable[src_url, dst_path]`): The source URL and destination path. For example `tf.io.gfile.copy`, that lets you download from Google storage. Returns: downloaded_path(s): `str`, The downloaded paths matching the given input `url_or_urls`. Example: ```py >>> downloaded_files = dl_manager.download_custom('s3://my-bucket/data.zip', custom_download_for_my_private_bucket) ``` """ cache_dir = self.download_config.cache_dir or config.DOWNLOADED_DATASETS_PATH max_retries = self.download_config.max_retries def url_to_downloaded_path(url): return os.path.join(cache_dir, hash_url_to_filename(url)) downloaded_path_or_paths = map_nested( url_to_downloaded_path, url_or_urls, disable_tqdm=not is_progress_bar_enabled() ) url_or_urls = NestedDataStructure(url_or_urls) downloaded_path_or_paths = NestedDataStructure(downloaded_path_or_paths) for url, path in zip(url_or_urls.flatten(), downloaded_path_or_paths.flatten()): try: get_from_cache( url, cache_dir=cache_dir, local_files_only=True, use_etag=False, max_retries=max_retries ) cached = True except FileNotFoundError: cached = False if not cached or self.download_config.force_download: custom_download(url, path) get_from_cache( url, cache_dir=cache_dir, local_files_only=True, use_etag=False, max_retries=max_retries ) self._record_sizes_checksums(url_or_urls, downloaded_path_or_paths) return downloaded_path_or_paths.data def download(self, url_or_urls): """Download given URL(s). By default, only one process is used for download. Pass customized `download_config.num_proc` to change this behavior. Args: url_or_urls (`str` or `list` or `dict`): URL or `list` or `dict` of URLs to download. Each URL is a `str`. Returns: `str` or `list` or `dict`: The downloaded paths matching the given input `url_or_urls`. Example: ```py >>> downloaded_files = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz') ``` """ download_config = self.download_config.copy() download_config.extract_compressed_file = False if download_config.download_desc is None: download_config.download_desc = "Downloading data" download_func = partial(self._download, download_config=download_config) start_time = datetime.now() downloaded_path_or_paths = map_nested( download_func, url_or_urls, map_tuple=True, num_proc=download_config.num_proc, disable_tqdm=not is_progress_bar_enabled(), desc="Downloading data files", ) duration = datetime.now() - start_time logger.info(f"Downloading took {duration.total_seconds() // 60} min") url_or_urls = NestedDataStructure(url_or_urls) downloaded_path_or_paths = NestedDataStructure(downloaded_path_or_paths) self.downloaded_paths.update(dict(zip(url_or_urls.flatten(), downloaded_path_or_paths.flatten()))) start_time = datetime.now() self._record_sizes_checksums(url_or_urls, downloaded_path_or_paths) duration = datetime.now() - start_time logger.info(f"Checksum Computation took {duration.total_seconds() // 60} min") return downloaded_path_or_paths.data def _download(self, url_or_filename: str, download_config: DownloadConfig) -> str: url_or_filename = str(url_or_filename) if is_relative_path(url_or_filename): # append the relative path to the base_path url_or_filename = url_or_path_join(self._base_path, url_or_filename) return cached_path(url_or_filename, download_config=download_config) def iter_archive(self, path_or_buf: Union[str, io.BufferedReader]): """Iterate over files within an archive. Args: path_or_buf (`str` or `io.BufferedReader`): Archive path or archive binary file object. Yields: `tuple[str, io.BufferedReader]`: 2-tuple (path_within_archive, file_object). File object is opened in binary mode. Example: ```py >>> archive = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz') >>> files = dl_manager.iter_archive(archive) ``` """ if hasattr(path_or_buf, "read"): return ArchiveIterable.from_buf(path_or_buf) else: return ArchiveIterable.from_path(path_or_buf) def iter_files(self, paths: Union[str, List[str]]): """Iterate over file paths. Args: paths (`str` or `list` of `str`): Root paths. Yields: `str`: File path. Example: ```py >>> files = dl_manager.download_and_extract('https://huggingface.co/datasets/beans/resolve/main/data/train.zip') >>> files = dl_manager.iter_files(files) ``` """ return FilesIterable.from_paths(paths) def extract(self, path_or_paths, num_proc="deprecated"): """Extract given path(s). Args: path_or_paths (path or `list` or `dict`): Path of file to extract. Each path is a `str`. num_proc (`int`): Use multi-processing if `num_proc` > 1 and the length of `path_or_paths` is larger than `num_proc`. <Deprecated version="2.6.2"> Pass `DownloadConfig(num_proc=<num_proc>)` to the initializer instead. </Deprecated> Returns: extracted_path(s): `str`, The extracted paths matching the given input path_or_paths. Example: ```py >>> downloaded_files = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz') >>> extracted_files = dl_manager.extract(downloaded_files) ``` """ if num_proc != "deprecated": warnings.warn( "'num_proc' was deprecated in version 2.6.2 and will be removed in 3.0.0. Pass `DownloadConfig(num_proc=<num_proc>)` to the initializer instead.", FutureWarning, ) download_config = self.download_config.copy() download_config.extract_compressed_file = True # Extract downloads the file first if it is not already downloaded if download_config.download_desc is None: download_config.download_desc = "Downloading data" extracted_paths = map_nested( partial(cached_path, download_config=download_config), path_or_paths, num_proc=download_config.num_proc, disable_tqdm=not is_progress_bar_enabled(), desc="Extracting data files", ) path_or_paths = NestedDataStructure(path_or_paths) extracted_paths = NestedDataStructure(extracted_paths) self.extracted_paths.update(dict(zip(path_or_paths.flatten(), extracted_paths.flatten()))) return extracted_paths.data def download_and_extract(self, url_or_urls): """Download and extract given `url_or_urls`. Is roughly equivalent to: ``` extracted_paths = dl_manager.extract(dl_manager.download(url_or_urls)) ``` Args: url_or_urls (`str` or `list` or `dict`): URL or `list` or `dict` of URLs to download and extract. Each URL is a `str`. Returns: extracted_path(s): `str`, extracted paths of given URL(s). """ return self.extract(self.download(url_or_urls)) def get_recorded_sizes_checksums(self): return self._recorded_sizes_checksums.copy() def delete_extracted_files(self): paths_to_delete = set(self.extracted_paths.values()) - set(self.downloaded_paths.values()) for key, path in list(self.extracted_paths.items()): if path in paths_to_delete and os.path.isfile(path): os.remove(path) del self.extracted_paths[key] def manage_extracted_files(self): if self.download_config.delete_extracted: self.delete_extracted_files()
datasets-main
src/datasets/download/download_manager.py
import glob import io import os import posixpath import re import tarfile import time import xml.dom.minidom import zipfile from asyncio import TimeoutError from io import BytesIO from itertools import chain from pathlib import Path, PurePosixPath from typing import Any, Callable, Dict, Generator, Iterable, List, Optional, Tuple, Union from xml.etree import ElementTree as ET import fsspec from aiohttp.client_exceptions import ClientError from .. import config from ..filesystems import COMPRESSION_FILESYSTEMS from ..utils.file_utils import ( get_authentication_headers_for_url, get_datasets_user_agent, http_head, is_local_path, is_relative_path, url_or_path_join, ) from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .download_config import DownloadConfig logger = get_logger(__name__) BASE_KNOWN_EXTENSIONS = [ "txt", "csv", "json", "jsonl", "tsv", "conll", "conllu", "orig", "parquet", "pkl", "pickle", "rel", "xml", ] COMPRESSION_EXTENSION_TO_PROTOCOL = { # single file compression **{fs_class.extension.lstrip("."): fs_class.protocol for fs_class in COMPRESSION_FILESYSTEMS}, # archive compression "zip": "zip", } SINGLE_FILE_COMPRESSION_PROTOCOLS = {fs_class.protocol for fs_class in COMPRESSION_FILESYSTEMS} SINGLE_SLASH_AFTER_PROTOCOL_PATTERN = re.compile(r"(?<!:):/") MAGIC_NUMBER_TO_COMPRESSION_PROTOCOL = { bytes.fromhex("504B0304"): "zip", bytes.fromhex("504B0506"): "zip", # empty archive bytes.fromhex("504B0708"): "zip", # spanned archive bytes.fromhex("425A68"): "bz2", bytes.fromhex("1F8B"): "gzip", bytes.fromhex("FD377A585A00"): "xz", bytes.fromhex("04224D18"): "lz4", bytes.fromhex("28B52FFD"): "zstd", } MAGIC_NUMBER_TO_UNSUPPORTED_COMPRESSION_PROTOCOL = { b"Rar!": "rar", } MAGIC_NUMBER_MAX_LENGTH = max( len(magic_number) for magic_number in chain(MAGIC_NUMBER_TO_COMPRESSION_PROTOCOL, MAGIC_NUMBER_TO_UNSUPPORTED_COMPRESSION_PROTOCOL) ) class NonStreamableDatasetError(Exception): pass def xjoin(a, *p): """ This function extends os.path.join to support the "::" hop separator. It supports both paths and urls. A shorthand, particularly useful where you have multiple hops, is to “chain” the URLs with the special separator "::". This is used to access files inside a zip file over http for example. Let's say you have a zip file at https://host.com/archive.zip, and you want to access the file inside the zip file at /folder1/file.txt. Then you can just chain the url this way: zip://folder1/file.txt::https://host.com/archive.zip The xjoin function allows you to apply the join on the first path of the chain. Example:: >>> xjoin("zip://folder1::https://host.com/archive.zip", "file.txt") zip://folder1/file.txt::https://host.com/archive.zip """ a, *b = str(a).split("::") if is_local_path(a): return os.path.join(a, *p) else: a = posixpath.join(a, *p) return "::".join([a] + b) def xdirname(a): """ This function extends os.path.dirname to support the "::" hop separator. It supports both paths and urls. A shorthand, particularly useful where you have multiple hops, is to “chain” the URLs with the special separator "::". This is used to access files inside a zip file over http for example. Let's say you have a zip file at https://host.com/archive.zip, and you want to access the file inside the zip file at /folder1/file.txt. Then you can just chain the url this way: zip://folder1/file.txt::https://host.com/archive.zip The xdirname function allows you to apply the dirname on the first path of the chain. Example:: >>> xdirname("zip://folder1/file.txt::https://host.com/archive.zip") zip://folder1::https://host.com/archive.zip """ a, *b = str(a).split("::") if is_local_path(a): a = os.path.dirname(Path(a).as_posix()) else: a = posixpath.dirname(a) # if we end up at the root of the protocol, we get for example a = 'http:' # so we have to fix it by adding the '//' that was removed: if a.endswith(":"): a += "//" return "::".join([a] + b) def xexists(urlpath: str, download_config: Optional[DownloadConfig] = None): """Extend `os.path.exists` function to support both local and remote files. Args: urlpath (`str`): URL path. download_config : mainly use token or storage_options to support different platforms and auth types. Returns: `bool` """ main_hop, *rest_hops = _as_str(urlpath).split("::") if is_local_path(main_hop): return os.path.exists(main_hop) else: urlpath, storage_options = _prepare_path_and_storage_options(urlpath, download_config=download_config) fs, *_ = fsspec.get_fs_token_paths(urlpath, storage_options=storage_options) return fs.exists(main_hop) def xbasename(a): """ This function extends os.path.basename to support the "::" hop separator. It supports both paths and urls. A shorthand, particularly useful where you have multiple hops, is to “chain” the URLs with the special separator "::". This is used to access files inside a zip file over http for example. Let's say you have a zip file at https://host.com/archive.zip, and you want to access the file inside the zip file at /folder1/file.txt. Then you can just chain the url this way: zip://folder1/file.txt::https://host.com/archive.zip The xbasename function allows you to apply the basename on the first path of the chain. Example:: >>> xbasename("zip://folder1/file.txt::https://host.com/archive.zip") file.txt """ a, *b = str(a).split("::") if is_local_path(a): return os.path.basename(Path(a).as_posix()) else: return posixpath.basename(a) def xsplit(a): """ This function extends os.path.split to support the "::" hop separator. It supports both paths and urls. A shorthand, particularly useful where you have multiple hops, is to “chain” the URLs with the special separator "::". This is used to access files inside a zip file over http for example. Let's say you have a zip file at https://host.com/archive.zip, and you want to access the file inside the zip file at /folder1/file.txt. Then you can just chain the url this way: zip://folder1/file.txt::https://host.com/archive.zip The xsplit function allows you to apply the xsplit on the first path of the chain. Example:: >>> xsplit("zip://folder1/file.txt::https://host.com/archive.zip") ('zip://folder1::https://host.com/archive.zip', 'file.txt') """ a, *b = str(a).split("::") if is_local_path(a): return os.path.split(Path(a).as_posix()) else: a, tail = posixpath.split(a) return "::".join([a + "//" if a.endswith(":") else a] + b), tail def xsplitext(a): """ This function extends os.path.splitext to support the "::" hop separator. It supports both paths and urls. A shorthand, particularly useful where you have multiple hops, is to “chain” the URLs with the special separator "::". This is used to access files inside a zip file over http for example. Let's say you have a zip file at https://host.com/archive.zip, and you want to access the file inside the zip file at /folder1/file.txt. Then you can just chain the url this way: zip://folder1/file.txt::https://host.com/archive.zip The xsplitext function allows you to apply the splitext on the first path of the chain. Example:: >>> xsplitext("zip://folder1/file.txt::https://host.com/archive.zip") ('zip://folder1/file::https://host.com/archive.zip', '.txt') """ a, *b = str(a).split("::") if is_local_path(a): return os.path.splitext(Path(a).as_posix()) else: a, ext = posixpath.splitext(a) return "::".join([a] + b), ext def xisfile(path, download_config: Optional[DownloadConfig] = None) -> bool: """Extend `os.path.isfile` function to support remote files. Args: path (`str`): URL path. download_config : mainly use token or storage_options to support different platforms and auth types. Returns: `bool` """ main_hop, *rest_hops = str(path).split("::") if is_local_path(main_hop): return os.path.isfile(path) else: path, storage_options = _prepare_path_and_storage_options(path, download_config=download_config) fs, *_ = fsspec.get_fs_token_paths(path, storage_options=storage_options) return fs.isfile(main_hop) def xgetsize(path, download_config: Optional[DownloadConfig] = None) -> int: """Extend `os.path.getsize` function to support remote files. Args: path (`str`): URL path. download_config : mainly use token or storage_options to support different platforms and auth types. Returns: `int`: optional """ main_hop, *rest_hops = str(path).split("::") if is_local_path(main_hop): return os.path.getsize(path) else: path, storage_options = _prepare_path_and_storage_options(path, download_config=download_config) fs, *_ = fsspec.get_fs_token_paths(path, storage_options=storage_options) size = fs.size(main_hop) if size is None: # use xopen instead of fs.open to make data fetching more robust with xopen(path, download_config=download_config) as f: size = len(f.read()) return size def xisdir(path, download_config: Optional[DownloadConfig] = None) -> bool: """Extend `os.path.isdir` function to support remote files. Args: path (`str`): URL path. download_config : mainly use token or storage_options to support different platforms and auth types. Returns: `bool` """ main_hop, *rest_hops = str(path).split("::") if is_local_path(main_hop): return os.path.isdir(path) else: path, storage_options = _prepare_path_and_storage_options(path, download_config=download_config) fs, *_ = fsspec.get_fs_token_paths(path, storage_options=storage_options) inner_path = main_hop.split("://")[1] if not inner_path.strip("/"): return True return fs.isdir(inner_path) def xrelpath(path, start=None): """Extend `os.path.relpath` function to support remote files. Args: path (`str`): URL path. start (`str`): Start URL directory path. Returns: `str` """ main_hop, *rest_hops = str(path).split("::") if is_local_path(main_hop): return os.path.relpath(main_hop, start=start) if start else os.path.relpath(main_hop) else: return posixpath.relpath(main_hop, start=str(start).split("::")[0]) if start else os.path.relpath(main_hop) def _add_retries_to_file_obj_read_method(file_obj): read = file_obj.read max_retries = config.STREAMING_READ_MAX_RETRIES def read_with_retries(*args, **kwargs): disconnect_err = None for retry in range(1, max_retries + 1): try: out = read(*args, **kwargs) break except (ClientError, TimeoutError) as err: disconnect_err = err logger.warning( f"Got disconnected from remote data host. Retrying in {config.STREAMING_READ_RETRY_INTERVAL}sec [{retry}/{max_retries}]" ) time.sleep(config.STREAMING_READ_RETRY_INTERVAL) else: raise ConnectionError("Server Disconnected") from disconnect_err return out file_obj.read = read_with_retries def _get_path_extension(path: str) -> str: # Get extension: https://foo.bar/train.json.gz -> gz extension = path.split(".")[-1] # Remove query params ("dl=1", "raw=true"): gz?dl=1 -> gz # Remove shards infos (".txt_1", ".txt-00000-of-00100"): txt_1 -> txt for symb in "?-_": extension = extension.split(symb)[0] return extension def _get_extraction_protocol_with_magic_number(f) -> Optional[str]: """read the magic number from a file-like object and return the compression protocol""" # Check if the file object is seekable even before reading the magic number (to avoid https://bugs.python.org/issue26440) try: f.seek(0) except (AttributeError, io.UnsupportedOperation): return None magic_number = f.read(MAGIC_NUMBER_MAX_LENGTH) f.seek(0) for i in range(MAGIC_NUMBER_MAX_LENGTH): compression = MAGIC_NUMBER_TO_COMPRESSION_PROTOCOL.get(magic_number[: MAGIC_NUMBER_MAX_LENGTH - i]) if compression is not None: return compression compression = MAGIC_NUMBER_TO_UNSUPPORTED_COMPRESSION_PROTOCOL.get(magic_number[: MAGIC_NUMBER_MAX_LENGTH - i]) if compression is not None: raise NotImplementedError(f"Compression protocol '{compression}' not implemented.") def _get_extraction_protocol(urlpath: str, download_config: Optional[DownloadConfig] = None) -> Optional[str]: # get inner file: zip://train-00000.json.gz::https://foo.bar/data.zip -> zip://train-00000.json.gz urlpath = str(urlpath) path = urlpath.split("::")[0] extension = _get_path_extension(path) if ( extension in BASE_KNOWN_EXTENSIONS or extension in ["tgz", "tar"] or path.endswith((".tar.gz", ".tar.bz2", ".tar.xz")) ): return None elif extension in COMPRESSION_EXTENSION_TO_PROTOCOL: return COMPRESSION_EXTENSION_TO_PROTOCOL[extension] urlpath, storage_options = _prepare_path_and_storage_options(urlpath, download_config=download_config) try: with fsspec.open(urlpath, **(storage_options or {})) as f: return _get_extraction_protocol_with_magic_number(f) except FileNotFoundError: if urlpath.startswith(config.HF_ENDPOINT): raise FileNotFoundError( urlpath + "\nIf the repo is private or gated, make sure to log in with `huggingface-cli login`." ) from None else: raise def _prepare_path_and_storage_options( urlpath: str, download_config: Optional[DownloadConfig] = None ) -> Tuple[str, Dict[str, Dict[str, Any]]]: prepared_urlpath = [] prepared_storage_options = {} for hop in urlpath.split("::"): hop, storage_options = _prepare_single_hop_path_and_storage_options(hop, download_config=download_config) prepared_urlpath.append(hop) prepared_storage_options.update(storage_options) return "::".join(prepared_urlpath), storage_options def _prepare_single_hop_path_and_storage_options( urlpath: str, download_config: Optional[DownloadConfig] = None ) -> Tuple[str, Dict[str, Dict[str, Any]]]: """ Prepare the URL and the kwargs that must be passed to the HttpFileSystem or to requests.get/head In particular it resolves google drive URLs It also adds the authentication headers for the Hugging Face Hub, for both https:// and hf:// paths. Storage options are formatted in the form {protocol: storage_options_for_protocol} """ token = None if download_config is None else download_config.token protocol = urlpath.split("://")[0] if "://" in urlpath else "file" if download_config is not None and protocol in download_config.storage_options: storage_options = download_config.storage_options[protocol] elif download_config is not None and protocol not in download_config.storage_options: storage_options = { option_name: option_value for option_name, option_value in download_config.storage_options.items() if option_name not in fsspec.available_protocols() } else: storage_options = {} if storage_options: storage_options = {protocol: storage_options} if protocol in ["http", "https"]: storage_options[protocol] = { "headers": { **get_authentication_headers_for_url(urlpath, token=token), "user-agent": get_datasets_user_agent(), }, "client_kwargs": {"trust_env": True}, # Enable reading proxy env variables. **(storage_options.get(protocol, {})), } if "drive.google.com" in urlpath: response = http_head(urlpath) cookies = None for k, v in response.cookies.items(): if k.startswith("download_warning"): urlpath += "&confirm=" + v cookies = response.cookies storage_options[protocol] = {"cookies": cookies, **storage_options.get(protocol, {})} # Fix Google Drive URL to avoid Virus scan warning if "drive.google.com" in urlpath and "confirm=" not in urlpath: urlpath += "&confirm=t" if urlpath.startswith("https://raw.githubusercontent.com/"): # Workaround for served data with gzip content-encoding: https://github.com/fsspec/filesystem_spec/issues/389 storage_options[protocol]["headers"]["Accept-Encoding"] = "identity" elif protocol == "hf": storage_options[protocol] = { "token": token, "endpoint": config.HF_ENDPOINT, **storage_options.get(protocol, {}), } return urlpath, storage_options def xopen(file: str, mode="r", *args, download_config: Optional[DownloadConfig] = None, **kwargs): """Extend `open` function to support remote files using `fsspec`. It also has a retry mechanism in case connection fails. The `args` and `kwargs` are passed to `fsspec.open`, except `token` which is used for queries to private repos on huggingface.co Args: file (`str`): Path name of the file to be opened. mode (`str`, *optional*, default "r"): Mode in which the file is opened. *args: Arguments to be passed to `fsspec.open`. download_config : mainly use token or storage_options to support different platforms and auth types. **kwargs: Keyword arguments to be passed to `fsspec.open`. Returns: file object """ # This works as well for `xopen(str(Path(...)))` file_str = _as_str(file) main_hop, *rest_hops = file_str.split("::") if is_local_path(main_hop): return open(main_hop, mode, *args, **kwargs) # add headers and cookies for authentication on the HF Hub and for Google Drive file, storage_options = _prepare_path_and_storage_options(file_str, download_config=download_config) kwargs = {**kwargs, **(storage_options or {})} try: file_obj = fsspec.open(file, mode=mode, *args, **kwargs).open() except ValueError as e: if str(e) == "Cannot seek streaming HTTP file": raise NonStreamableDatasetError( "Streaming is not possible for this dataset because data host server doesn't support HTTP range " "requests. You can still load this dataset in non-streaming mode by passing `streaming=False` (default)" ) from e else: raise except FileNotFoundError: if file.startswith(config.HF_ENDPOINT): raise FileNotFoundError( file + "\nIf the repo is private or gated, make sure to log in with `huggingface-cli login`." ) from None else: raise _add_retries_to_file_obj_read_method(file_obj) return file_obj def xlistdir(path: str, download_config: Optional[DownloadConfig] = None) -> List[str]: """Extend `os.listdir` function to support remote files. Args: path (`str`): URL path. download_config : mainly use token or storage_options to support different platforms and auth types. Returns: `list` of `str` """ main_hop, *rest_hops = _as_str(path).split("::") if is_local_path(main_hop): return os.listdir(path) else: # globbing inside a zip in a private repo requires authentication path, storage_options = _prepare_path_and_storage_options(path, download_config=download_config) fs, *_ = fsspec.get_fs_token_paths(path, storage_options=storage_options) inner_path = main_hop.split("://")[1] if inner_path.strip("/") and not fs.isdir(inner_path): raise FileNotFoundError(f"Directory doesn't exist: {path}") objects = fs.listdir(inner_path) return [os.path.basename(obj["name"]) for obj in objects] def xglob(urlpath, *, recursive=False, download_config: Optional[DownloadConfig] = None): """Extend `glob.glob` function to support remote files. Args: urlpath (`str`): URL path with shell-style wildcard patterns. recursive (`bool`, default `False`): Whether to match the "**" pattern recursively to zero or more directories or subdirectories. download_config : mainly use token or storage_options to support different platforms and auth types. Returns: `list` of `str` """ main_hop, *rest_hops = _as_str(urlpath).split("::") if is_local_path(main_hop): return glob.glob(main_hop, recursive=recursive) else: # globbing inside a zip in a private repo requires authentication urlpath, storage_options = _prepare_path_and_storage_options(urlpath, download_config=download_config) fs, *_ = fsspec.get_fs_token_paths(urlpath, storage_options=storage_options) # - If there's no "*" in the pattern, get_fs_token_paths() doesn't do any pattern matching # so to be able to glob patterns like "[0-9]", we have to call `fs.glob`. # - Also "*" in get_fs_token_paths() only matches files: we have to call `fs.glob` to match directories. # - If there is "**" in the pattern, `fs.glob` must be called anyway. inner_path = main_hop.split("://")[1] globbed_paths = fs.glob(inner_path) protocol = fs.protocol if isinstance(fs.protocol, str) else fs.protocol[-1] return ["::".join([f"{protocol}://{globbed_path}"] + rest_hops) for globbed_path in globbed_paths] def xwalk(urlpath, download_config: Optional[DownloadConfig] = None, **kwargs): """Extend `os.walk` function to support remote files. Args: urlpath (`str`): URL root path. download_config : mainly use token or storage_options to support different platforms and auth types. **kwargs: Additional keyword arguments forwarded to the underlying filesystem. Yields: `tuple`: 3-tuple (dirpath, dirnames, filenames). """ main_hop, *rest_hops = _as_str(urlpath).split("::") if is_local_path(main_hop): yield from os.walk(main_hop, **kwargs) else: # walking inside a zip in a private repo requires authentication urlpath, storage_options = _prepare_path_and_storage_options(urlpath, download_config=download_config) fs, *_ = fsspec.get_fs_token_paths(urlpath, storage_options=storage_options) inner_path = main_hop.split("://")[1] if inner_path.strip("/") and not fs.isdir(inner_path): return [] protocol = fs.protocol if isinstance(fs.protocol, str) else fs.protocol[-1] for dirpath, dirnames, filenames in fs.walk(inner_path, **kwargs): yield "::".join([f"{protocol}://{dirpath}"] + rest_hops), dirnames, filenames class xPath(type(Path())): """Extension of `pathlib.Path` to support both local paths and remote URLs.""" def __str__(self): path_str = super().__str__() main_hop, *rest_hops = path_str.split("::") if is_local_path(main_hop): return main_hop path_as_posix = path_str.replace("\\", "/") path_as_posix = SINGLE_SLASH_AFTER_PROTOCOL_PATTERN.sub("://", path_as_posix) path_as_posix += "//" if path_as_posix.endswith(":") else "" # Add slashes to root of the protocol return path_as_posix def exists(self, download_config: Optional[DownloadConfig] = None): """Extend `pathlib.Path.exists` method to support both local and remote files. Args: download_config : mainly use token or storage_options to support different platforms and auth types. Returns: `bool` """ return xexists(str(self), download_config=download_config) def glob(self, pattern, download_config: Optional[DownloadConfig] = None): """Glob function for argument of type :obj:`~pathlib.Path` that supports both local paths end remote URLs. Args: pattern (`str`): Pattern that resulting paths must match. download_config : mainly use token or storage_options to support different platforms and auth types. Yields: [`xPath`] """ posix_path = self.as_posix() main_hop, *rest_hops = posix_path.split("::") if is_local_path(main_hop): yield from Path(main_hop).glob(pattern) else: # globbing inside a zip in a private repo requires authentication if rest_hops: urlpath = rest_hops[0] urlpath, storage_options = _prepare_path_and_storage_options(urlpath, download_config=download_config) storage_options = {urlpath.split("://")[0]: storage_options} posix_path = "::".join([main_hop, urlpath, *rest_hops[1:]]) else: storage_options = None fs, *_ = fsspec.get_fs_token_paths(xjoin(posix_path, pattern), storage_options=storage_options) # - If there's no "*" in the pattern, get_fs_token_paths() doesn't do any pattern matching # so to be able to glob patterns like "[0-9]", we have to call `fs.glob`. # - Also "*" in get_fs_token_paths() only matches files: we have to call `fs.glob` to match directories. # - If there is "**" in the pattern, `fs.glob` must be called anyway. globbed_paths = fs.glob(xjoin(main_hop, pattern)) for globbed_path in globbed_paths: yield type(self)("::".join([f"{fs.protocol}://{globbed_path}"] + rest_hops)) def rglob(self, pattern, **kwargs): """Rglob function for argument of type :obj:`~pathlib.Path` that supports both local paths end remote URLs. Args: pattern (`str`): Pattern that resulting paths must match. Yields: [`xPath`] """ return self.glob("**/" + pattern, **kwargs) @property def parent(self) -> "xPath": """Name function for argument of type :obj:`~pathlib.Path` that supports both local paths end remote URLs. Returns: [`xPath`] """ return type(self)(xdirname(self.as_posix())) @property def name(self) -> str: """Name function for argument of type :obj:`~pathlib.Path` that supports both local paths end remote URLs. Returns: `str` """ return PurePosixPath(self.as_posix().split("::")[0]).name @property def stem(self) -> str: """Stem function for argument of type :obj:`~pathlib.Path` that supports both local paths end remote URLs. Returns: `str` """ return PurePosixPath(self.as_posix().split("::")[0]).stem @property def suffix(self) -> str: """Suffix function for argument of type :obj:`~pathlib.Path` that supports both local paths end remote URLs. Returns: `str` """ return PurePosixPath(self.as_posix().split("::")[0]).suffix def open(self, *args, **kwargs): """Extend :func:`xopen` to support argument of type :obj:`~pathlib.Path`. Args: **args: Arguments passed to :func:`fsspec.open`. **kwargs: Keyword arguments passed to :func:`fsspec.open`. Returns: `io.FileIO`: File-like object. """ return xopen(str(self), *args, **kwargs) def joinpath(self, *p: Tuple[str, ...]) -> "xPath": """Extend :func:`xjoin` to support argument of type :obj:`~pathlib.Path`. Args: *p (`tuple` of `str`): Other path components. Returns: [`xPath`] """ return type(self)(xjoin(self.as_posix(), *p)) def __truediv__(self, p: str) -> "xPath": return self.joinpath(p) def with_suffix(self, suffix): main_hop, *rest_hops = str(self).split("::") if is_local_path(main_hop): return type(self)(str(super().with_suffix(suffix))) return type(self)("::".join([type(self)(PurePosixPath(main_hop).with_suffix(suffix)).as_posix()] + rest_hops)) def _as_str(path: Union[str, Path, xPath]): return str(path) if isinstance(path, xPath) else str(xPath(str(path))) def xgzip_open(filepath_or_buffer, *args, download_config: Optional[DownloadConfig] = None, **kwargs): import gzip if hasattr(filepath_or_buffer, "read"): return gzip.open(filepath_or_buffer, *args, **kwargs) else: filepath_or_buffer = str(filepath_or_buffer) return gzip.open(xopen(filepath_or_buffer, "rb", download_config=download_config), *args, **kwargs) def xnumpy_load(filepath_or_buffer, *args, download_config: Optional[DownloadConfig] = None, **kwargs): import numpy as np if hasattr(filepath_or_buffer, "read"): return np.load(filepath_or_buffer, *args, **kwargs) else: filepath_or_buffer = str(filepath_or_buffer) return np.load(xopen(filepath_or_buffer, "rb", download_config=download_config), *args, **kwargs) def xpandas_read_csv(filepath_or_buffer, download_config: Optional[DownloadConfig] = None, **kwargs): import pandas as pd if hasattr(filepath_or_buffer, "read"): return pd.read_csv(filepath_or_buffer, **kwargs) else: filepath_or_buffer = str(filepath_or_buffer) if kwargs.get("compression", "infer") == "infer": kwargs["compression"] = _get_extraction_protocol(filepath_or_buffer, download_config=download_config) return pd.read_csv(xopen(filepath_or_buffer, "rb", download_config=download_config), **kwargs) def xpandas_read_excel(filepath_or_buffer, download_config: Optional[DownloadConfig] = None, **kwargs): import pandas as pd if hasattr(filepath_or_buffer, "read"): try: return pd.read_excel(filepath_or_buffer, **kwargs) except ValueError: # Cannot seek streaming HTTP file return pd.read_excel(BytesIO(filepath_or_buffer.read()), **kwargs) else: filepath_or_buffer = str(filepath_or_buffer) try: return pd.read_excel(xopen(filepath_or_buffer, "rb", download_config=download_config), **kwargs) except ValueError: # Cannot seek streaming HTTP file return pd.read_excel( BytesIO(xopen(filepath_or_buffer, "rb", download_config=download_config).read()), **kwargs ) def xsio_loadmat(filepath_or_buffer, download_config: Optional[DownloadConfig] = None, **kwargs): import scipy.io as sio if hasattr(filepath_or_buffer, "read"): return sio.loadmat(filepath_or_buffer, **kwargs) else: return sio.loadmat(xopen(filepath_or_buffer, "rb", download_config=download_config), **kwargs) def xet_parse(source, parser=None, download_config: Optional[DownloadConfig] = None): """Extend `xml.etree.ElementTree.parse` function to support remote files. Args: source: File path or file object. parser (`XMLParser`, *optional*, default `XMLParser`): Parser instance. download_config : mainly use token or storage_options to support different platforms and auth types. Returns: `xml.etree.ElementTree.Element`: Root element of the given source document. """ if hasattr(source, "read"): return ET.parse(source, parser=parser) else: with xopen(source, "rb", download_config=download_config) as f: return ET.parse(f, parser=parser) def xxml_dom_minidom_parse(filename_or_file, download_config: Optional[DownloadConfig] = None, **kwargs): """Extend `xml.dom.minidom.parse` function to support remote files. Args: filename_or_file (`str` or file): File path or file object. download_config : mainly use token or storage_options to support different platforms and auth types. **kwargs (optional): Additional keyword arguments passed to `xml.dom.minidom.parse`. Returns: :obj:`xml.dom.minidom.Document`: Parsed document. """ if hasattr(filename_or_file, "read"): return xml.dom.minidom.parse(filename_or_file, **kwargs) else: with xopen(filename_or_file, "rb", download_config=download_config) as f: return xml.dom.minidom.parse(f, **kwargs) class _IterableFromGenerator(Iterable): """Utility class to create an iterable from a generator function, in order to reset the generator when needed.""" def __init__(self, generator: Callable, *args, **kwargs): self.generator = generator self.args = args self.kwargs = kwargs def __iter__(self): yield from self.generator(*self.args, **self.kwargs) class ArchiveIterable(_IterableFromGenerator): """An iterable of (path, fileobj) from a TAR archive, used by `iter_archive`""" @staticmethod def _iter_tar(f): stream = tarfile.open(fileobj=f, mode="r|*") for tarinfo in stream: file_path = tarinfo.name if not tarinfo.isreg(): continue if file_path is None: continue if os.path.basename(file_path).startswith((".", "__")): # skipping hidden files continue file_obj = stream.extractfile(tarinfo) yield file_path, file_obj stream.members = [] del stream @staticmethod def _iter_zip(f): zipf = zipfile.ZipFile(f) for member in zipf.infolist(): file_path = member.filename if member.is_dir(): continue if file_path is None: continue if os.path.basename(file_path).startswith((".", "__")): # skipping hidden files continue file_obj = zipf.open(member) yield file_path, file_obj @classmethod def _iter_from_fileobj(cls, f) -> Generator[Tuple, None, None]: compression = _get_extraction_protocol_with_magic_number(f) if compression == "zip": yield from cls._iter_zip(f) else: yield from cls._iter_tar(f) @classmethod def _iter_from_urlpath( cls, urlpath: str, download_config: Optional[DownloadConfig] = None ) -> Generator[Tuple, None, None]: compression = _get_extraction_protocol(urlpath, download_config=download_config) with xopen(urlpath, "rb", download_config=download_config) as f: if compression == "zip": yield from cls._iter_zip(f) else: yield from cls._iter_tar(f) @classmethod def from_buf(cls, fileobj) -> "ArchiveIterable": return cls(cls._iter_from_fileobj, fileobj) @classmethod def from_urlpath(cls, urlpath_or_buf, download_config: Optional[DownloadConfig] = None) -> "ArchiveIterable": return cls(cls._iter_from_urlpath, urlpath_or_buf, download_config) class FilesIterable(_IterableFromGenerator): """An iterable of paths from a list of directories or files""" @classmethod def _iter_from_urlpaths( cls, urlpaths: Union[str, List[str]], download_config: Optional[DownloadConfig] = None ) -> Generator[str, None, None]: if not isinstance(urlpaths, list): urlpaths = [urlpaths] for urlpath in urlpaths: if xisfile(urlpath, download_config=download_config): yield urlpath elif xisdir(urlpath, download_config=download_config): for dirpath, dirnames, filenames in xwalk(urlpath, download_config=download_config): # in-place modification to prune the search dirnames[:] = sorted([dirname for dirname in dirnames if not dirname.startswith((".", "__"))]) if xbasename(dirpath).startswith((".", "__")): # skipping hidden directories continue for filename in sorted(filenames): if filename.startswith((".", "__")): # skipping hidden files continue yield xjoin(dirpath, filename) else: raise FileNotFoundError(urlpath) @classmethod def from_urlpaths(cls, urlpaths, download_config: Optional[DownloadConfig] = None) -> "FilesIterable": return cls(cls._iter_from_urlpaths, urlpaths, download_config) class StreamingDownloadManager: """ Download manager that uses the "::" separator to navigate through (possibly remote) compressed archives. Contrary to the regular `DownloadManager`, the `download` and `extract` methods don't actually download nor extract data, but they rather return the path or url that could be opened using the `xopen` function which extends the built-in `open` function to stream data from remote files. """ is_streaming = True def __init__( self, dataset_name: Optional[str] = None, data_dir: Optional[str] = None, download_config: Optional[DownloadConfig] = None, base_path: Optional[str] = None, ): self._dataset_name = dataset_name self._data_dir = data_dir self._base_path = base_path or os.path.abspath(".") self.download_config = download_config or DownloadConfig() @property def manual_dir(self): return self._data_dir def download(self, url_or_urls): """Normalize URL(s) of files to stream data from. This is the lazy version of `DownloadManager.download` for streaming. Args: url_or_urls (`str` or `list` or `dict`): URL(s) of files to stream data from. Each url is a `str`. Returns: url(s): (`str` or `list` or `dict`), URL(s) to stream data from matching the given input url_or_urls. Example: ```py >>> downloaded_files = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz') ``` """ url_or_urls = map_nested(self._download, url_or_urls, map_tuple=True) return url_or_urls def _download(self, urlpath: str) -> str: urlpath = str(urlpath) if is_relative_path(urlpath): # append the relative path to the base_path urlpath = url_or_path_join(self._base_path, urlpath) return urlpath def extract(self, url_or_urls): """Add extraction protocol for given url(s) for streaming. This is the lazy version of `DownloadManager.extract` for streaming. Args: url_or_urls (`str` or `list` or `dict`): URL(s) of files to stream data from. Each url is a `str`. Returns: url(s): (`str` or `list` or `dict`), URL(s) to stream data from matching the given input `url_or_urls`. Example: ```py >>> downloaded_files = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz') >>> extracted_files = dl_manager.extract(downloaded_files) ``` """ urlpaths = map_nested(self._extract, url_or_urls, map_tuple=True) return urlpaths def _extract(self, urlpath: str) -> str: urlpath = str(urlpath) protocol = _get_extraction_protocol(urlpath, download_config=self.download_config) # get inner file: zip://train-00000.json.gz::https://foo.bar/data.zip -> zip://train-00000.json.gz path = urlpath.split("::")[0] extension = _get_path_extension(path) if extension in ["tgz", "tar"] or path.endswith((".tar.gz", ".tar.bz2", ".tar.xz")): raise NotImplementedError( f"Extraction protocol for TAR archives like '{urlpath}' is not implemented in streaming mode. " f"Please use `dl_manager.iter_archive` instead.\n\n" f"Example usage:\n\n" f"\turl = dl_manager.download(url)\n" f"\ttar_archive_iterator = dl_manager.iter_archive(url)\n\n" f"\tfor filename, file in tar_archive_iterator:\n" f"\t\t..." ) if protocol is None: # no extraction return urlpath elif protocol in SINGLE_FILE_COMPRESSION_PROTOCOLS: # there is one single file which is the uncompressed file inner_file = os.path.basename(urlpath.split("::")[0]) inner_file = inner_file[: inner_file.rindex(".")] if "." in inner_file else inner_file return f"{protocol}://{inner_file}::{urlpath}" else: return f"{protocol}://::{urlpath}" def download_and_extract(self, url_or_urls): """Prepare given `url_or_urls` for streaming (add extraction protocol). This is the lazy version of `DownloadManager.download_and_extract` for streaming. Is equivalent to: ``` urls = dl_manager.extract(dl_manager.download(url_or_urls)) ``` Args: url_or_urls (`str` or `list` or `dict`): URL(s) to stream from data from. Each url is a `str`. Returns: url(s): (`str` or `list` or `dict`), URL(s) to stream data from matching the given input `url_or_urls`. """ return self.extract(self.download(url_or_urls)) def iter_archive(self, urlpath_or_buf: Union[str, io.BufferedReader]) -> Iterable[Tuple]: """Iterate over files within an archive. Args: urlpath_or_buf (`str` or `io.BufferedReader`): Archive path or archive binary file object. Yields: `tuple[str, io.BufferedReader]`: 2-tuple (path_within_archive, file_object). File object is opened in binary mode. Example: ```py >>> archive = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz') >>> files = dl_manager.iter_archive(archive) ``` """ if hasattr(urlpath_or_buf, "read"): return ArchiveIterable.from_buf(urlpath_or_buf) else: return ArchiveIterable.from_urlpath(urlpath_or_buf, download_config=self.download_config) def iter_files(self, urlpaths: Union[str, List[str]]) -> Iterable[str]: """Iterate over files. Args: urlpaths (`str` or `list` of `str`): Root paths. Yields: str: File URL path. Example: ```py >>> files = dl_manager.download_and_extract('https://huggingface.co/datasets/beans/resolve/main/data/train.zip') >>> files = dl_manager.iter_files(files) ``` """ return FilesIterable.from_urlpaths(urlpaths, download_config=self.download_config)
datasets-main
src/datasets/download/streaming_download_manager.py
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter logger = logging.get_logger(__name__) _FORMAT_TYPES: Dict[Optional[str], Type[Formatter]] = {} _FORMAT_TYPES_ALIASES: Dict[Optional[str], str] = {} _FORMAT_TYPES_ALIASES_UNAVAILABLE: Dict[Optional[str], Exception] = {} def _register_formatter( formatter_cls: type, format_type: Optional[str], aliases: Optional[List[str]] = None, ): """ Register a Formatter object using a name and optional aliases. This function must be used on a Formatter class. """ aliases = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) _FORMAT_TYPES[format_type] = formatter_cls for alias in set(aliases + [format_type]): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) _FORMAT_TYPES_ALIASES[alias] = format_type def _register_unavailable_formatter( unavailable_error: Exception, format_type: Optional[str], aliases: Optional[List[str]] = None ): """ Register an unavailable Formatter object using a name and optional aliases. This function must be used on an Exception object that is raised when trying to get the unavailable formatter. """ aliases = aliases if aliases is not None else [] for alias in set(aliases + [format_type]): _FORMAT_TYPES_ALIASES_UNAVAILABLE[alias] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["python"]) _register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"]) _register_formatter(NumpyFormatter, "numpy", aliases=["np"]) _register_formatter(PandasFormatter, "pandas", aliases=["pd"]) _register_formatter(CustomFormatter, "custom") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"]) else: _torch_error = ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.") _register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, "tensorflow", aliases=["tf"]) else: _tf_error = ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.") _register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, "jax", aliases=[]) else: _jax_error = ValueError("JAX needs to be installed to be able to return JAX arrays.") _register_unavailable_formatter(_jax_error, "jax", aliases=[]) def get_format_type_from_alias(format_type: Optional[str]) -> Optional[str]: """If the given format type is a known alias, then return its main type name. Otherwise return the type with no change.""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def get_formatter(format_type: Optional[str], **format_kwargs) -> Formatter: """ Factory function to get a Formatter given its type name and keyword arguments. A formatter is an object that extracts and formats data from pyarrow table. It defines the formatting for rows, colums and batches. If the formatter for a given type name doesn't exist or is not available, an error is raised. """ format_type = get_format_type_from_alias(format_type) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**format_kwargs) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None)}, but got '{format_type}'" )
datasets-main
src/datasets/formatting/__init__.py
# Copyright 2020 The HuggingFace Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections.abc import Mapping, MutableMapping from functools import partial # Lint as: python3 from typing import Any, Callable, Dict, Generic, Iterable, List, Optional, TypeVar, Union import numpy as np import pandas as pd import pyarrow as pa from packaging import version from .. import config from ..features import Features from ..features.features import _ArrayXDExtensionType, _is_zero_copy_only, decode_nested_example, pandas_types_mapper from ..table import Table from ..utils.py_utils import no_op_if_value_is_null T = TypeVar("T") RowFormat = TypeVar("RowFormat") ColumnFormat = TypeVar("ColumnFormat") BatchFormat = TypeVar("BatchFormat") def _is_range_contiguous(key: range) -> bool: return key.step == 1 and key.stop >= key.start def _raise_bad_key_type(key: Any): raise TypeError( f"Wrong key type: '{key}' of type '{type(key)}'. Expected one of int, slice, range, str or Iterable." ) def _query_table_with_indices_mapping( table: Table, key: Union[int, slice, range, str, Iterable], indices: Table ) -> pa.Table: """ Query a pyarrow Table to extract the subtable that correspond to the given key. The :obj:`indices` parameter corresponds to the indices mapping in case we cant to take into account a shuffling or an indices selection for example. The indices table must contain one column named "indices" of type uint64. """ if isinstance(key, int): key = indices.fast_slice(key % indices.num_rows, 1).column(0)[0].as_py() return _query_table(table, key) if isinstance(key, slice): key = range(*key.indices(indices.num_rows)) if isinstance(key, range): if _is_range_contiguous(key) and key.start >= 0: return _query_table( table, [i.as_py() for i in indices.fast_slice(key.start, key.stop - key.start).column(0)] ) else: pass # treat as an iterable if isinstance(key, str): table = table.select([key]) return _query_table(table, indices.column(0).to_pylist()) if isinstance(key, Iterable): return _query_table(table, [indices.fast_slice(i, 1).column(0)[0].as_py() for i in key]) _raise_bad_key_type(key) def _query_table(table: Table, key: Union[int, slice, range, str, Iterable]) -> pa.Table: """ Query a pyarrow Table to extract the subtable that correspond to the given key. """ if isinstance(key, int): return table.fast_slice(key % table.num_rows, 1) if isinstance(key, slice): key = range(*key.indices(table.num_rows)) if isinstance(key, range): if _is_range_contiguous(key) and key.start >= 0: return table.fast_slice(key.start, key.stop - key.start) else: pass # treat as an iterable if isinstance(key, str): return table.table.drop([column for column in table.column_names if column != key]) if isinstance(key, Iterable): key = np.fromiter(key, np.int64) if len(key) == 0: return table.table.slice(0, 0) # don't use pyarrow.Table.take even for pyarrow >=1.0 (see https://issues.apache.org/jira/browse/ARROW-9773) return table.fast_gather(key % table.num_rows) _raise_bad_key_type(key) def _is_array_with_nulls(pa_array: pa.Array) -> bool: return pa_array.null_count > 0 class BaseArrowExtractor(Generic[RowFormat, ColumnFormat, BatchFormat]): """ Arrow extractor are used to extract data from pyarrow tables. It makes it possible to extract rows, columns and batches. These three extractions types have to be implemented. """ def extract_row(self, pa_table: pa.Table) -> RowFormat: raise NotImplementedError def extract_column(self, pa_table: pa.Table) -> ColumnFormat: raise NotImplementedError def extract_batch(self, pa_table: pa.Table) -> BatchFormat: raise NotImplementedError def _unnest(py_dict: Dict[str, List[T]]) -> Dict[str, T]: """Return the first element of a batch (dict) as a row (dict)""" return {key: array[0] for key, array in py_dict.items()} class SimpleArrowExtractor(BaseArrowExtractor[pa.Table, pa.Array, pa.Table]): def extract_row(self, pa_table: pa.Table) -> pa.Table: return pa_table def extract_column(self, pa_table: pa.Table) -> pa.Array: return pa_table.column(0) def extract_batch(self, pa_table: pa.Table) -> pa.Table: return pa_table class PythonArrowExtractor(BaseArrowExtractor[dict, list, dict]): def extract_row(self, pa_table: pa.Table) -> dict: return _unnest(pa_table.to_pydict()) def extract_column(self, pa_table: pa.Table) -> list: return pa_table.column(0).to_pylist() def extract_batch(self, pa_table: pa.Table) -> dict: return pa_table.to_pydict() class NumpyArrowExtractor(BaseArrowExtractor[dict, np.ndarray, dict]): def __init__(self, **np_array_kwargs): self.np_array_kwargs = np_array_kwargs def extract_row(self, pa_table: pa.Table) -> dict: return _unnest(self.extract_batch(pa_table)) def extract_column(self, pa_table: pa.Table) -> np.ndarray: return self._arrow_array_to_numpy(pa_table[pa_table.column_names[0]]) def extract_batch(self, pa_table: pa.Table) -> dict: return {col: self._arrow_array_to_numpy(pa_table[col]) for col in pa_table.column_names} def _arrow_array_to_numpy(self, pa_array: pa.Array) -> np.ndarray: if isinstance(pa_array, pa.ChunkedArray): if isinstance(pa_array.type, _ArrayXDExtensionType): # don't call to_pylist() to preserve dtype of the fixed-size array zero_copy_only = _is_zero_copy_only(pa_array.type.storage_dtype, unnest=True) array: List = [ row for chunk in pa_array.chunks for row in chunk.to_numpy(zero_copy_only=zero_copy_only) ] else: zero_copy_only = _is_zero_copy_only(pa_array.type) and all( not _is_array_with_nulls(chunk) for chunk in pa_array.chunks ) array: List = [ row for chunk in pa_array.chunks for row in chunk.to_numpy(zero_copy_only=zero_copy_only) ] else: if isinstance(pa_array.type, _ArrayXDExtensionType): # don't call to_pylist() to preserve dtype of the fixed-size array zero_copy_only = _is_zero_copy_only(pa_array.type.storage_dtype, unnest=True) array: List = pa_array.to_numpy(zero_copy_only=zero_copy_only) else: zero_copy_only = _is_zero_copy_only(pa_array.type) and not _is_array_with_nulls(pa_array) array: List = pa_array.to_numpy(zero_copy_only=zero_copy_only).tolist() if len(array) > 0: if any( (isinstance(x, np.ndarray) and (x.dtype == object or x.shape != array[0].shape)) or (isinstance(x, float) and np.isnan(x)) for x in array ): return np.array(array, copy=False, dtype=object) return np.array(array, copy=False) class PandasArrowExtractor(BaseArrowExtractor[pd.DataFrame, pd.Series, pd.DataFrame]): def extract_row(self, pa_table: pa.Table) -> pd.DataFrame: return pa_table.slice(length=1).to_pandas(types_mapper=pandas_types_mapper) def extract_column(self, pa_table: pa.Table) -> pd.Series: return pa_table.select([0]).to_pandas(types_mapper=pandas_types_mapper)[pa_table.column_names[0]] def extract_batch(self, pa_table: pa.Table) -> pd.DataFrame: return pa_table.to_pandas(types_mapper=pandas_types_mapper) class PythonFeaturesDecoder: def __init__(self, features: Optional[Features]): self.features = features def decode_row(self, row: dict) -> dict: return self.features.decode_example(row) if self.features else row def decode_column(self, column: list, column_name: str) -> list: return self.features.decode_column(column, column_name) if self.features else column def decode_batch(self, batch: dict) -> dict: return self.features.decode_batch(batch) if self.features else batch class PandasFeaturesDecoder: def __init__(self, features: Optional[Features]): self.features = features def decode_row(self, row: pd.DataFrame) -> pd.DataFrame: decode = ( { column_name: no_op_if_value_is_null(partial(decode_nested_example, feature)) for column_name, feature in self.features.items() if self.features._column_requires_decoding[column_name] } if self.features else {} ) if decode: row[list(decode.keys())] = row.transform(decode) return row def decode_column(self, column: pd.Series, column_name: str) -> pd.Series: decode = ( no_op_if_value_is_null(partial(decode_nested_example, self.features[column_name])) if self.features and column_name in self.features and self.features._column_requires_decoding[column_name] else None ) if decode: column = column.transform(decode) return column def decode_batch(self, batch: pd.DataFrame) -> pd.DataFrame: return self.decode_row(batch) class LazyDict(MutableMapping): """A dictionary backed by Arrow data. The values are formatted on-the-fly when accessing the dictionary.""" def __init__(self, pa_table: pa.Table, formatter: "Formatter"): self.pa_table = pa_table self.formatter = formatter self.data = {key: None for key in pa_table.column_names} self.keys_to_format = set(self.data.keys()) def __len__(self): return len(self.data) def __getitem__(self, key): value = self.data[key] if key in self.keys_to_format: value = self.format(key) self.data[key] = value self.keys_to_format.remove(key) return value def __setitem__(self, key, value): if key in self.keys_to_format: self.keys_to_format.remove(key) self.data[key] = value def __delitem__(self, key) -> None: if key in self.keys_to_format: self.keys_to_format.remove(key) del self.data[key] def __iter__(self): return iter(self.data) def __contains__(self, key): return key in self.data def __repr__(self): self._format_all() return repr(self.data) if config.PY_VERSION >= version.parse("3.9"): # merging with the union ("|") operator is supported in Python 3.9+ def __or__(self, other): if isinstance(other, LazyDict): inst = self.copy() other = other.copy() other._format_all() inst.keys_to_format -= other.data.keys() inst.data = inst.data | other.data return inst if isinstance(other, dict): inst = self.copy() inst.keys_to_format -= other.keys() inst.data = inst.data | other return inst return NotImplemented def __ror__(self, other): if isinstance(other, LazyDict): inst = self.copy() other = other.copy() other._format_all() inst.keys_to_format -= other.data.keys() inst.data = other.data | inst.data return inst if isinstance(other, dict): inst = self.copy() inst.keys_to_format -= other.keys() inst.data = other | inst.data return inst return NotImplemented def __ior__(self, other): if isinstance(other, LazyDict): other = other.copy() other._format_all() self.keys_to_format -= other.data.keys() self.data |= other.data else: self.keys_to_format -= other.keys() self.data |= other return self def __copy__(self): # Identical to `UserDict.__copy__` inst = self.__class__.__new__(self.__class__) inst.__dict__.update(self.__dict__) # Create a copy and avoid triggering descriptors inst.__dict__["data"] = self.__dict__["data"].copy() inst.__dict__["keys_to_format"] = self.__dict__["keys_to_format"].copy() return inst def copy(self): import copy return copy.copy(self) @classmethod def fromkeys(cls, iterable, value=None): raise NotImplementedError def format(self, key): raise NotImplementedError def _format_all(self): for key in self.keys_to_format: self.data[key] = self.format(key) self.keys_to_format.clear() class LazyRow(LazyDict): def format(self, key): return self.formatter.format_column(self.pa_table.select([key]))[0] class LazyBatch(LazyDict): def format(self, key): return self.formatter.format_column(self.pa_table.select([key])) class Formatter(Generic[RowFormat, ColumnFormat, BatchFormat]): """ A formatter is an object that extracts and formats data from pyarrow tables. It defines the formatting for rows, columns and batches. """ simple_arrow_extractor = SimpleArrowExtractor python_arrow_extractor = PythonArrowExtractor numpy_arrow_extractor = NumpyArrowExtractor pandas_arrow_extractor = PandasArrowExtractor def __init__(self, features: Optional[Features] = None): self.features = features self.python_features_decoder = PythonFeaturesDecoder(self.features) self.pandas_features_decoder = PandasFeaturesDecoder(self.features) def __call__(self, pa_table: pa.Table, query_type: str) -> Union[RowFormat, ColumnFormat, BatchFormat]: if query_type == "row": return self.format_row(pa_table) elif query_type == "column": return self.format_column(pa_table) elif query_type == "batch": return self.format_batch(pa_table) def format_row(self, pa_table: pa.Table) -> RowFormat: raise NotImplementedError def format_column(self, pa_table: pa.Table) -> ColumnFormat: raise NotImplementedError def format_batch(self, pa_table: pa.Table) -> BatchFormat: raise NotImplementedError class TensorFormatter(Formatter[RowFormat, ColumnFormat, BatchFormat]): def recursive_tensorize(self, data_struct: dict): raise NotImplementedError class ArrowFormatter(Formatter[pa.Table, pa.Array, pa.Table]): def format_row(self, pa_table: pa.Table) -> pa.Table: return self.simple_arrow_extractor().extract_row(pa_table) def format_column(self, pa_table: pa.Table) -> pa.Array: return self.simple_arrow_extractor().extract_column(pa_table) def format_batch(self, pa_table: pa.Table) -> pa.Table: return self.simple_arrow_extractor().extract_batch(pa_table) class PythonFormatter(Formatter[Mapping, list, Mapping]): def __init__(self, features=None, lazy=False): super().__init__(features) self.lazy = lazy def format_row(self, pa_table: pa.Table) -> Mapping: if self.lazy: return LazyRow(pa_table, self) row = self.python_arrow_extractor().extract_row(pa_table) row = self.python_features_decoder.decode_row(row) return row def format_column(self, pa_table: pa.Table) -> list: column = self.python_arrow_extractor().extract_column(pa_table) column = self.python_features_decoder.decode_column(column, pa_table.column_names[0]) return column def format_batch(self, pa_table: pa.Table) -> Mapping: if self.lazy: return LazyBatch(pa_table, self) batch = self.python_arrow_extractor().extract_batch(pa_table) batch = self.python_features_decoder.decode_batch(batch) return batch class PandasFormatter(Formatter[pd.DataFrame, pd.Series, pd.DataFrame]): def format_row(self, pa_table: pa.Table) -> pd.DataFrame: row = self.pandas_arrow_extractor().extract_row(pa_table) row = self.pandas_features_decoder.decode_row(row) return row def format_column(self, pa_table: pa.Table) -> pd.Series: column = self.pandas_arrow_extractor().extract_column(pa_table) column = self.pandas_features_decoder.decode_column(column, pa_table.column_names[0]) return column def format_batch(self, pa_table: pa.Table) -> pd.DataFrame: row = self.pandas_arrow_extractor().extract_batch(pa_table) row = self.pandas_features_decoder.decode_batch(row) return row class CustomFormatter(Formatter[dict, ColumnFormat, dict]): """ A user-defined custom formatter function defined by a ``transform``. The transform must take as input a batch of data extracted for an arrow table using the python extractor, and return a batch. If the output batch is not a dict, then output_all_columns won't work. If the ouput batch has several fields, then querying a single column won't work since we don't know which field to return. """ def __init__(self, transform: Callable[[dict], dict], features=None, **kwargs): super().__init__(features=features) self.transform = transform def format_row(self, pa_table: pa.Table) -> dict: formatted_batch = self.format_batch(pa_table) try: return _unnest(formatted_batch) except Exception as exc: raise TypeError( f"Custom formatting function must return a dict of sequences to be able to pick a row, but got {formatted_batch}" ) from exc def format_column(self, pa_table: pa.Table) -> ColumnFormat: formatted_batch = self.format_batch(pa_table) if hasattr(formatted_batch, "keys"): if len(formatted_batch.keys()) > 1: raise TypeError( "Tried to query a column but the custom formatting function returns too many columns. " f"Only one column was expected but got columns {list(formatted_batch.keys())}." ) else: raise TypeError( f"Custom formatting function must return a dict to be able to pick a row, but got {formatted_batch}" ) try: return formatted_batch[pa_table.column_names[0]] except Exception as exc: raise TypeError( f"Custom formatting function must return a dict to be able to pick a row, but got {formatted_batch}" ) from exc def format_batch(self, pa_table: pa.Table) -> dict: batch = self.python_arrow_extractor().extract_batch(pa_table) batch = self.python_features_decoder.decode_batch(batch) return self.transform(batch) def _check_valid_column_key(key: str, columns: List[str]) -> None: if key not in columns: raise KeyError(f"Column {key} not in the dataset. Current columns in the dataset: {columns}") def _check_valid_index_key(key: Union[int, slice, range, Iterable], size: int) -> None: if isinstance(key, int): if (key < 0 and key + size < 0) or (key >= size): raise IndexError(f"Invalid key: {key} is out of bounds for size {size}") return elif isinstance(key, slice): pass elif isinstance(key, range): if len(key) > 0: _check_valid_index_key(max(key), size=size) _check_valid_index_key(min(key), size=size) elif isinstance(key, Iterable): if len(key) > 0: _check_valid_index_key(int(max(key)), size=size) _check_valid_index_key(int(min(key)), size=size) else: _raise_bad_key_type(key) def key_to_query_type(key: Union[int, slice, range, str, Iterable]) -> str: if isinstance(key, int): return "row" elif isinstance(key, str): return "column" elif isinstance(key, (slice, range, Iterable)): return "batch" _raise_bad_key_type(key) def query_table( table: Table, key: Union[int, slice, range, str, Iterable], indices: Optional[Table] = None, ) -> pa.Table: """ Query a Table to extract the subtable that correspond to the given key. Args: table (``datasets.table.Table``): The input Table to query from key (``Union[int, slice, range, str, Iterable]``): The key can be of different types: - an integer i: the subtable containing only the i-th row - a slice [i:j:k]: the subtable containing the rows that correspond to this slice - a range(i, j, k): the subtable containing the rows that correspond to this range - a string c: the subtable containing all the rows but only the column c - an iterable l: the subtable that is the concatenation of all the i-th rows for all i in the iterable indices (Optional ``datasets.table.Table``): If not None, it is used to re-map the given key to the table rows. The indices table must contain one column named "indices" of type uint64. This is used in case of shuffling or rows selection. Returns: ``pyarrow.Table``: the result of the query on the input table """ # Check if key is valid if not isinstance(key, (int, slice, range, str, Iterable)): _raise_bad_key_type(key) if isinstance(key, str): _check_valid_column_key(key, table.column_names) else: size = indices.num_rows if indices is not None else table.num_rows _check_valid_index_key(key, size) # Query the main table if indices is None: pa_subtable = _query_table(table, key) else: pa_subtable = _query_table_with_indices_mapping(table, key, indices=indices) return pa_subtable def format_table( table: Table, key: Union[int, slice, range, str, Iterable], formatter: Formatter, format_columns: Optional[list] = None, output_all_columns=False, ): """ Format a Table depending on the key that was used and a Formatter object. Args: table (``datasets.table.Table``): The input Table to format key (``Union[int, slice, range, str, Iterable]``): Depending on the key that was used, the formatter formats the table as either a row, a column or a batch. formatter (``datasets.formatting.formatting.Formatter``): Any subclass of a Formatter such as PythonFormatter, NumpyFormatter, etc. format_columns (:obj:`List[str]`, optional): if not None, it defines the columns that will be formatted using the given formatter. Other columns are discarded (unless ``output_all_columns`` is True) output_all_columns (:obj:`bool`, defaults to False). If True, the formatted output is completed using the columns that are not in the ``format_columns`` list. For these columns, the PythonFormatter is used. Returns: A row, column or batch formatted object defined by the Formatter: - the PythonFormatter returns a dictionary for a row or a batch, and a list for a column. - the NumpyFormatter returns a dictionary for a row or a batch, and a np.array for a column. - the PandasFormatter returns a pd.DataFrame for a row or a batch, and a pd.Series for a column. - the TorchFormatter returns a dictionary for a row or a batch, and a torch.Tensor for a column. - the TFFormatter returns a dictionary for a row or a batch, and a tf.Tensor for a column. """ if isinstance(table, Table): pa_table = table.table else: pa_table = table query_type = key_to_query_type(key) python_formatter = PythonFormatter(features=None) if format_columns is None: return formatter(pa_table, query_type=query_type) elif query_type == "column": if key in format_columns: return formatter(pa_table, query_type) else: return python_formatter(pa_table, query_type=query_type) else: pa_table_to_format = pa_table.drop(col for col in pa_table.column_names if col not in format_columns) formatted_output = formatter(pa_table_to_format, query_type=query_type) if output_all_columns: if isinstance(formatted_output, MutableMapping): pa_table_with_remaining_columns = pa_table.drop( col for col in pa_table.column_names if col in format_columns ) remaining_columns_dict = python_formatter(pa_table_with_remaining_columns, query_type=query_type) formatted_output.update(remaining_columns_dict) else: raise TypeError( f"Custom formatting function must return a dict to work with output_all_columns=True, but got {formatted_output}" ) return formatted_output
datasets-main
src/datasets/formatting/formatting.py
# Copyright 2020 The HuggingFace Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class TorchFormatter(TensorFormatter[Mapping, "torch.Tensor", Mapping]): def __init__(self, features=None, **torch_tensor_kwargs): super().__init__(features=features) self.torch_tensor_kwargs = torch_tensor_kwargs import torch # noqa import torch at initialization def _consolidate(self, column): import torch if isinstance(column, list) and column: if all( isinstance(x, torch.Tensor) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(column) return column def _tensorize(self, value): import torch if isinstance(value, (str, bytes, type(None))): return value elif isinstance(value, (np.character, np.ndarray)) and np.issubdtype(value.dtype, np.character): return value.tolist() default_dtype = {} if isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.integer): default_dtype = {"dtype": torch.int64} elif isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.floating): default_dtype = {"dtype": torch.float32} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(value, PIL.Image.Image): value = np.asarray(value) return torch.tensor(value, **{**default_dtype, **self.torch_tensor_kwargs}) def _recursive_tensorize(self, data_struct): import torch # support for torch, tf, jax etc. if hasattr(data_struct, "__array__") and not isinstance(data_struct, torch.Tensor): data_struct = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(data_struct, np.ndarray): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) elif isinstance(data_struct, (list, tuple)): return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) return self._tensorize(data_struct) def recursive_tensorize(self, data_struct: dict): return map_nested(self._recursive_tensorize, data_struct, map_list=False) def format_row(self, pa_table: pa.Table) -> Mapping: row = self.numpy_arrow_extractor().extract_row(pa_table) row = self.python_features_decoder.decode_row(row) return self.recursive_tensorize(row) def format_column(self, pa_table: pa.Table) -> "torch.Tensor": column = self.numpy_arrow_extractor().extract_column(pa_table) column = self.python_features_decoder.decode_column(column, pa_table.column_names[0]) column = self.recursive_tensorize(column) column = self._consolidate(column) return column def format_batch(self, pa_table: pa.Table) -> Mapping: batch = self.numpy_arrow_extractor().extract_batch(pa_table) batch = self.python_features_decoder.decode_batch(batch) batch = self.recursive_tensorize(batch) for column_name in batch: batch[column_name] = self._consolidate(batch[column_name]) return batch
datasets-main
src/datasets/formatting/torch_formatter.py
# Copyright 2021 The HuggingFace Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib logger = get_logger() DEVICE_MAPPING: Optional[dict] = None class JaxFormatter(TensorFormatter[Mapping, "jax.Array", Mapping]): def __init__(self, features=None, device=None, **jnp_array_kwargs): super().__init__(features=features) import jax from jaxlib.xla_client import Device if isinstance(device, Device): raise ValueError( f"Expected {device} to be a `str` not {type(device)}, as `jaxlib.xla_extension.Device` " "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) self.device = device if isinstance(device, str) else str(jax.devices()[0]) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: DEVICE_MAPPING = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys()): logger.warning( f"Device with string identifier {self.device} not listed among the available " f"devices: {list(DEVICE_MAPPING.keys())}, so falling back to the default " f"device: {str(jax.devices()[0])}." ) self.device = str(jax.devices()[0]) self.jnp_array_kwargs = jnp_array_kwargs @staticmethod def _map_devices_to_str() -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(device): device for device in jax.devices()} def _consolidate(self, column): import jax import jax.numpy as jnp if isinstance(column, list) and column: if all( isinstance(x, jax.Array) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(column, axis=0) return column def _tensorize(self, value): import jax import jax.numpy as jnp if isinstance(value, (str, bytes, type(None))): return value elif isinstance(value, (np.character, np.ndarray)) and np.issubdtype(value.dtype, np.character): return value.tolist() default_dtype = {} if isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.integer): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_x64: default_dtype = {"dtype": jnp.int64} else: default_dtype = {"dtype": jnp.int32} elif isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.floating): default_dtype = {"dtype": jnp.float32} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(value, PIL.Image.Image): value = np.asarray(value) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: DEVICE_MAPPING = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device]): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(value, **{**default_dtype, **self.jnp_array_kwargs}) def _recursive_tensorize(self, data_struct): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(data_struct, torch.Tensor): return self._tensorize(data_struct.detach().cpu().numpy()[()]) if hasattr(data_struct, "__array__") and not isinstance(data_struct, jax.Array): data_struct = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(data_struct, np.ndarray): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) elif isinstance(data_struct, (list, tuple)): return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) return self._tensorize(data_struct) def recursive_tensorize(self, data_struct: dict): return map_nested(self._recursive_tensorize, data_struct, map_list=False) def format_row(self, pa_table: pa.Table) -> Mapping: row = self.numpy_arrow_extractor().extract_row(pa_table) row = self.python_features_decoder.decode_row(row) return self.recursive_tensorize(row) def format_column(self, pa_table: pa.Table) -> "jax.Array": column = self.numpy_arrow_extractor().extract_column(pa_table) column = self.python_features_decoder.decode_column(column, pa_table.column_names[0]) column = self.recursive_tensorize(column) column = self._consolidate(column) return column def format_batch(self, pa_table: pa.Table) -> Mapping: batch = self.numpy_arrow_extractor().extract_batch(pa_table) batch = self.python_features_decoder.decode_batch(batch) batch = self.recursive_tensorize(batch) for column_name in batch: batch[column_name] = self._consolidate(batch[column_name]) return batch
datasets-main
src/datasets/formatting/jax_formatter.py
# Copyright 2020 The HuggingFace Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import tensorflow as tf class TFFormatter(TensorFormatter[Mapping, "tf.Tensor", Mapping]): def __init__(self, features=None, **tf_tensor_kwargs): super().__init__(features=features) self.tf_tensor_kwargs = tf_tensor_kwargs import tensorflow as tf # noqa: F401 - import tf at initialization def _consolidate(self, column): import tensorflow as tf if isinstance(column, list) and column: if all( isinstance(x, tf.Tensor) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return tf.stack(column) elif all( isinstance(x, (tf.Tensor, tf.RaggedTensor)) and x.ndim == 1 and x.dtype == column[0].dtype for x in column ): # only rag 1-D tensors, otherwise some dimensions become ragged even though they were consolidated return tf.ragged.stack(column) return column def _tensorize(self, value): import tensorflow as tf if value is None: return value default_dtype = {} if isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.integer): default_dtype = {"dtype": tf.int64} elif isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.floating): default_dtype = {"dtype": tf.float32} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(value, PIL.Image.Image): value = np.asarray(value) return tf.convert_to_tensor(value, **{**default_dtype, **self.tf_tensor_kwargs}) def _recursive_tensorize(self, data_struct): import tensorflow as tf # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(data_struct, torch.Tensor): return self._tensorize(data_struct.detach().cpu().numpy()[()]) if hasattr(data_struct, "__array__") and not isinstance(data_struct, tf.Tensor): data_struct = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(data_struct, np.ndarray): if data_struct.dtype == object: # tf tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) elif isinstance(data_struct, (list, tuple)): return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) return self._tensorize(data_struct) def recursive_tensorize(self, data_struct: dict): return map_nested(self._recursive_tensorize, data_struct, map_list=False) def format_row(self, pa_table: pa.Table) -> Mapping: row = self.numpy_arrow_extractor().extract_row(pa_table) row = self.python_features_decoder.decode_row(row) return self.recursive_tensorize(row) def format_column(self, pa_table: pa.Table) -> "tf.Tensor": column = self.numpy_arrow_extractor().extract_column(pa_table) column = self.python_features_decoder.decode_column(column, pa_table.column_names[0]) column = self.recursive_tensorize(column) column = self._consolidate(column) return column def format_batch(self, pa_table: pa.Table) -> Mapping: batch = self.numpy_arrow_extractor().extract_batch(pa_table) batch = self.python_features_decoder.decode_batch(batch) batch = self.recursive_tensorize(batch) for column_name in batch: batch[column_name] = self._consolidate(batch[column_name]) return batch
datasets-main
src/datasets/formatting/tf_formatter.py
# Copyright 2020 The HuggingFace Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from collections.abc import Mapping import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter class NumpyFormatter(TensorFormatter[Mapping, np.ndarray, Mapping]): def __init__(self, features=None, **np_array_kwargs): super().__init__(features=features) self.np_array_kwargs = np_array_kwargs def _consolidate(self, column): if isinstance(column, list): if column and all( isinstance(x, np.ndarray) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return np.stack(column) else: # don't use np.array(column, dtype=object) # since it fails in certain cases # see https://stackoverflow.com/q/51005699 out = np.empty(len(column), dtype=object) out[:] = column return out return column def _tensorize(self, value): if isinstance(value, (str, bytes, type(None))): return value elif isinstance(value, (np.character, np.ndarray)) and np.issubdtype(value.dtype, np.character): return value elif isinstance(value, np.number): return value default_dtype = {} if isinstance(value, np.ndarray) and np.issubdtype(value.dtype, np.integer): default_dtype = {"dtype": np.int64} elif isinstance(value, np.ndarray) and np.issubdtype(value.dtype, np.floating): default_dtype = {"dtype": np.float32} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(value, PIL.Image.Image): return np.asarray(value, **self.np_array_kwargs) return np.asarray(value, **{**default_dtype, **self.np_array_kwargs}) def _recursive_tensorize(self, data_struct): # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(data_struct, torch.Tensor): return self._tensorize(data_struct.detach().cpu().numpy()[()]) if hasattr(data_struct, "__array__") and not isinstance(data_struct, (np.ndarray, np.character, np.number)): data_struct = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(data_struct, np.ndarray): if data_struct.dtype == object: return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) if isinstance(data_struct, (list, tuple)): return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) return self._tensorize(data_struct) def recursive_tensorize(self, data_struct: dict): return map_nested(self._recursive_tensorize, data_struct, map_list=False) def format_row(self, pa_table: pa.Table) -> Mapping: row = self.numpy_arrow_extractor().extract_row(pa_table) row = self.python_features_decoder.decode_row(row) return self.recursive_tensorize(row) def format_column(self, pa_table: pa.Table) -> np.ndarray: column = self.numpy_arrow_extractor().extract_column(pa_table) column = self.python_features_decoder.decode_column(column, pa_table.column_names[0]) column = self.recursive_tensorize(column) column = self._consolidate(column) return column def format_batch(self, pa_table: pa.Table) -> Mapping: batch = self.numpy_arrow_extractor().extract_batch(pa_table) batch = self.python_features_decoder.decode_batch(batch) batch = self.recursive_tensorize(batch) for column_name in batch: batch[column_name] = self._consolidate(batch[column_name]) return batch
datasets-main
src/datasets/formatting/np_formatter.py
import fnmatch import json import os import shutil import tempfile import xml.etree.ElementTree as ET from argparse import ArgumentParser from pathlib import Path from typing import Optional from datasets import config from datasets.commands import BaseDatasetsCLICommand from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.download.mock_download_manager import MockDownloadManager from datasets.load import dataset_module_factory, import_main_class from datasets.utils.deprecation_utils import deprecated from datasets.utils.logging import get_logger, set_verbosity_warning from datasets.utils.py_utils import map_nested logger = get_logger(__name__) DEFAULT_ENCODING = "utf-8" def dummy_data_command_factory(args): return DummyDataCommand( args.path_to_dataset, args.auto_generate, args.n_lines, args.json_field, args.xml_tag, args.match_text_files, args.keep_uncompressed, args.cache_dir, args.encoding, ) class DummyDataGeneratorDownloadManager(DownloadManager): def __init__(self, mock_download_manager, *args, **kwargs): super().__init__(*args, **kwargs) self.mock_download_manager = mock_download_manager self.downloaded_dummy_paths = [] self.expected_dummy_paths = [] def download(self, url_or_urls): output = super().download(url_or_urls) dummy_output = self.mock_download_manager.download(url_or_urls) map_nested(self.downloaded_dummy_paths.append, output, map_tuple=True) map_nested(self.expected_dummy_paths.append, dummy_output, map_tuple=True) return output def download_and_extract(self, url_or_urls): output = super().extract(super().download(url_or_urls)) dummy_output = self.mock_download_manager.download(url_or_urls) map_nested(self.downloaded_dummy_paths.append, output, map_tuple=True) map_nested(self.expected_dummy_paths.append, dummy_output, map_tuple=True) return output def auto_generate_dummy_data_folder( self, n_lines: int = 5, json_field: Optional[str] = None, xml_tag: Optional[str] = None, match_text_files: Optional[str] = None, encoding: Optional[str] = None, ) -> bool: os.makedirs( os.path.join( self.mock_download_manager.datasets_scripts_dir, self.mock_download_manager.dataset_name, self.mock_download_manager.dummy_data_folder, "dummy_data", ), exist_ok=True, ) total = 0 self.mock_download_manager.load_existing_dummy_data = False for src_path, relative_dst_path in zip(self.downloaded_dummy_paths, self.expected_dummy_paths): dst_path = os.path.join( self.mock_download_manager.datasets_scripts_dir, self.mock_download_manager.dataset_name, self.mock_download_manager.dummy_data_folder, relative_dst_path, ) total += self._create_dummy_data( src_path, dst_path, n_lines=n_lines, json_field=json_field, xml_tag=xml_tag, match_text_files=match_text_files, encoding=encoding, ) if total == 0: logger.error( "Dummy data generation failed: no dummy files were created. " "Make sure the data files format is supported by the auto-generation." ) return total > 0 def _create_dummy_data( self, src_path: str, dst_path: str, n_lines: int, json_field: Optional[str] = None, xml_tag: Optional[str] = None, match_text_files: Optional[str] = None, encoding: Optional[str] = None, ) -> int: encoding = encoding or DEFAULT_ENCODING if os.path.isfile(src_path): logger.debug(f"Trying to generate dummy data file {dst_path}") dst_path_extensions = Path(dst_path).suffixes line_by_line_extensions = [".txt", ".csv", ".jsonl", ".tsv"] is_line_by_line_text_file = any(extension in dst_path_extensions for extension in line_by_line_extensions) if match_text_files is not None: file_name = os.path.basename(dst_path) for pattern in match_text_files.split(","): is_line_by_line_text_file |= fnmatch.fnmatch(file_name, pattern) # Line by line text file (txt, csv etc.) if is_line_by_line_text_file: Path(dst_path).parent.mkdir(exist_ok=True, parents=True) with open(src_path, encoding=encoding) as src_file: with open(dst_path, "w", encoding=encoding) as dst_file: first_lines = [] for i, line in enumerate(src_file): if i >= n_lines: break first_lines.append(line) dst_file.write("".join(first_lines).strip()) return 1 # json file elif ".json" in dst_path_extensions: with open(src_path, encoding=encoding) as src_file: json_data = json.load(src_file) if json_field is not None: json_data = json_data[json_field] if isinstance(json_data, dict): if not all(isinstance(v, list) for v in json_data.values()): raise ValueError( f"Couldn't parse columns {list(json_data.keys())}. " "Maybe specify which json field must be used " "to read the data with --json_field <my_field>." ) first_json_data = {k: v[:n_lines] for k, v in json_data.items()} else: first_json_data = json_data[:n_lines] if json_field is not None: first_json_data = {json_field: first_json_data} Path(dst_path).parent.mkdir(exist_ok=True, parents=True) with open(dst_path, "w", encoding=encoding) as dst_file: json.dump(first_json_data, dst_file) return 1 # xml file elif any(extension in dst_path_extensions for extension in [".xml", ".txm"]): if xml_tag is None: logger.warning("Found xml file but 'xml_tag' is set to None. Please provide --xml_tag") else: self._create_xml_dummy_data(src_path, dst_path, xml_tag, n_lines=n_lines, encoding=encoding) return 1 logger.warning( f"Couldn't generate dummy file '{dst_path}'. " "Ignore that if this file is not useful for dummy data." ) return 0 # directory, iterate through all files elif os.path.isdir(src_path): total = 0 for path, _, files in os.walk(src_path): for name in files: if not name.startswith("."): # ignore files like .DS_Store etc. src_file_path = os.path.join(path, name) dst_file_path = os.path.join(dst_path, Path(src_file_path).relative_to(src_path)) total += self._create_dummy_data( src_file_path, dst_file_path, n_lines=n_lines, json_field=json_field, xml_tag=xml_tag, match_text_files=match_text_files, encoding=encoding, ) return total @staticmethod def _create_xml_dummy_data(src_path, dst_path, xml_tag, n_lines=5, encoding=DEFAULT_ENCODING): Path(dst_path).parent.mkdir(exist_ok=True, parents=True) with open(src_path, encoding=encoding) as src_file: n_line = 0 parents = [] for event, elem in ET.iterparse(src_file, events=("start", "end")): if event == "start": parents.append(elem) else: _ = parents.pop() if elem.tag == xml_tag: if n_line < n_lines: n_line += 1 else: if parents: parents[-1].remove(elem) ET.ElementTree(element=elem).write(dst_path, encoding=encoding) def compress_autogenerated_dummy_data(self, path_to_dataset): root_dir = os.path.join(path_to_dataset, self.mock_download_manager.dummy_data_folder) base_name = os.path.join(root_dir, "dummy_data") base_dir = "dummy_data" logger.info(f"Compressing dummy data folder to '{base_name}.zip'") shutil.make_archive(base_name, "zip", root_dir, base_dir) shutil.rmtree(base_name) @deprecated( "The `datasets` repository does not host the dataset scripts anymore. Therefore, dummy data is no longer needed to test their loading with CI." ) class DummyDataCommand(BaseDatasetsCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): test_parser = parser.add_parser("dummy_data", help="Generate dummy data.") test_parser.add_argument("--auto_generate", action="store_true", help="Automatically generate dummy data") test_parser.add_argument( "--n_lines", type=int, default=5, help="Number of lines or samples to keep when auto-generating dummy data" ) test_parser.add_argument( "--json_field", type=str, default=None, help="Optional, json field to read the data from when auto-generating dummy data. In the json data files, this field must point to a list of samples as json objects (ex: the 'data' field for squad-like files)", ) test_parser.add_argument( "--xml_tag", type=str, default=None, help="Optional, xml tag name of the samples inside the xml files when auto-generating dummy data.", ) test_parser.add_argument( "--match_text_files", type=str, default=None, help="Optional, a comma separated list of file patterns that looks for line-by-line text files other than *.txt or *.csv. Example: --match_text_files *.label", ) test_parser.add_argument( "--keep_uncompressed", action="store_true", help="Whether to leave the dummy data folders uncompressed when auto-generating dummy data. Useful for debugging for to do manual adjustements before compressing.", ) test_parser.add_argument( "--cache_dir", type=str, default=None, help="Cache directory to download and cache files when auto-generating dummy data", ) test_parser.add_argument( "--encoding", type=str, default=None, help=f"Encoding to use when auto-generating dummy data. Defaults to {DEFAULT_ENCODING}", ) test_parser.add_argument("path_to_dataset", type=str, help="Path to the dataset (example: ./datasets/squad)") test_parser.set_defaults(func=dummy_data_command_factory) def __init__( self, path_to_dataset: str, auto_generate: bool, n_lines: int, json_field: Optional[str], xml_tag: Optional[str], match_text_files: Optional[str], keep_uncompressed: bool, cache_dir: Optional[str], encoding: Optional[str], ): self._path_to_dataset = path_to_dataset if os.path.isdir(path_to_dataset): self._dataset_name = path_to_dataset.replace(os.sep, "/").split("/")[-1] else: self._dataset_name = path_to_dataset.replace(os.sep, "/").split("/")[-2] cache_dir = os.path.expanduser(cache_dir or config.HF_DATASETS_CACHE) self._auto_generate = auto_generate self._n_lines = n_lines self._json_field = json_field self._xml_tag = xml_tag self._match_text_files = match_text_files self._keep_uncompressed = keep_uncompressed self._cache_dir = cache_dir self._encoding = encoding def run(self): set_verbosity_warning() dataset_module = dataset_module_factory(self._path_to_dataset) builder_cls = import_main_class(dataset_module.module_path) # use `None` as config if no configs builder_configs = builder_cls.BUILDER_CONFIGS or [None] auto_generate_results = [] with tempfile.TemporaryDirectory() as tmp_dir: for builder_config in builder_configs: config_name = builder_config.name if builder_config else None dataset_builder = builder_cls(config_name=config_name, hash=dataset_module.hash, cache_dir=tmp_dir) version = builder_config.version if builder_config else dataset_builder.config.version mock_dl_manager = MockDownloadManager( dataset_name=self._dataset_name, config=builder_config, version=version, use_local_dummy_data=True, load_existing_dummy_data=False, ) if self._auto_generate: auto_generate_results.append( self._autogenerate_dummy_data( dataset_builder=dataset_builder, mock_dl_manager=mock_dl_manager, keep_uncompressed=self._keep_uncompressed, ) ) else: self._print_dummy_data_instructions( dataset_builder=dataset_builder, mock_dl_manager=mock_dl_manager ) if self._auto_generate and not self._keep_uncompressed: if all(auto_generate_results): print(f"Automatic dummy data generation succeeded for all configs of '{self._path_to_dataset}'") else: print(f"Automatic dummy data generation failed for some configs of '{self._path_to_dataset}'") def _autogenerate_dummy_data(self, dataset_builder, mock_dl_manager, keep_uncompressed) -> Optional[bool]: dl_cache_dir = ( os.path.join(self._cache_dir, config.DOWNLOADED_DATASETS_DIR) if self._cache_dir else config.DOWNLOADED_DATASETS_PATH ) download_config = DownloadConfig(cache_dir=dl_cache_dir) dl_manager = DummyDataGeneratorDownloadManager( dataset_name=self._dataset_name, mock_download_manager=mock_dl_manager, download_config=download_config ) dataset_builder._split_generators(dl_manager) mock_dl_manager.load_existing_dummy_data = False # don't use real dummy data dl_manager.auto_generate_dummy_data_folder( n_lines=self._n_lines, json_field=self._json_field, xml_tag=self._xml_tag, match_text_files=self._match_text_files, encoding=self._encoding, ) if not keep_uncompressed: path_do_dataset = os.path.join(mock_dl_manager.datasets_scripts_dir, mock_dl_manager.dataset_name) dl_manager.compress_autogenerated_dummy_data(path_do_dataset) # now test that the dummy_data.zip file actually works mock_dl_manager.load_existing_dummy_data = True # use real dummy data n_examples_per_split = {} os.makedirs(dataset_builder._cache_dir, exist_ok=True) try: split_generators = dataset_builder._split_generators(mock_dl_manager) for split_generator in split_generators: dataset_builder._prepare_split(split_generator, check_duplicate_keys=False) n_examples_per_split[split_generator.name] = split_generator.split_info.num_examples except OSError as e: logger.error( f"Failed to load dummy data for config '{dataset_builder.config.name}''.\nOriginal error:\n" + str(e) ) return False else: if all(n_examples > 0 for n_examples in n_examples_per_split.values()): logger.warning( f"Dummy data generation done and dummy data test succeeded for config '{dataset_builder.config.name}''." ) return True else: empty_splits = [ split_name for split_name in n_examples_per_split if n_examples_per_split[split_name] == 0 ] logger.warning( f"Dummy data generation done but dummy data test failed since splits {empty_splits} have 0 examples for config '{dataset_builder.config.name}''." ) return False else: generated_dummy_data_dir = os.path.join(self._path_to_dataset, mock_dl_manager.dummy_data_folder) logger.info( f"Dummy data generated in directory '{generated_dummy_data_dir}' but kept uncompressed. " "Please compress this directory into a zip file to use it for dummy data tests." ) def _print_dummy_data_instructions(self, dataset_builder, mock_dl_manager): dummy_data_folder = os.path.join(self._path_to_dataset, mock_dl_manager.dummy_data_folder) logger.info(f"Creating dummy folder structure for {dummy_data_folder}... ") os.makedirs(dummy_data_folder, exist_ok=True) try: generator_splits = dataset_builder._split_generators(mock_dl_manager) except FileNotFoundError as e: print( f"Dataset {self._dataset_name} with config {mock_dl_manager.config} seems to already open files in the method `_split_generators(...)`. You might consider to instead only open files in the method `_generate_examples(...)` instead. If this is not possible the dummy data has to be created with less guidance. Make sure you create the file {e.filename}." ) files_to_create = set() split_names = [] dummy_file_name = mock_dl_manager.dummy_file_name for split in generator_splits: logger.info(f"Collecting dummy data file paths to create for {split.name}") split_names.append(split.name) gen_kwargs = split.gen_kwargs generator = dataset_builder._generate_examples(**gen_kwargs) try: dummy_data_guidance_print = "\n" + 30 * "=" + "DUMMY DATA INSTRUCTIONS" + 30 * "=" + "\n" config_string = ( f"config {mock_dl_manager.config.name} of " if mock_dl_manager.config is not None else "" ) dummy_data_guidance_print += ( "- In order to create the dummy data for " + config_string + f"{self._dataset_name}, please go into the folder '{dummy_data_folder}' with `cd {dummy_data_folder}` . \n\n" ) # trigger generate function for key, record in generator: pass dummy_data_guidance_print += f"- It appears that the function `_generate_examples(...)` expects one or more files in the folder {dummy_file_name} using the function `glob.glob(...)`. In this case, please refer to the `_generate_examples(...)` method to see under which filename the dummy data files should be created. \n\n" except FileNotFoundError as e: files_to_create.add(e.filename) split_names = ", ".join(split_names) if len(files_to_create) > 0: # no glob.glob(...) in `_generate_examples(...)` if len(files_to_create) == 1 and next(iter(files_to_create)) == dummy_file_name: dummy_data_guidance_print += f"- Please create a single dummy data file called '{next(iter(files_to_create))}' from the folder '{dummy_data_folder}'. Make sure that the dummy data file provides at least one example for the split(s) '{split_names}' \n\n" files_string = dummy_file_name else: files_string = ", ".join(files_to_create) dummy_data_guidance_print += f"- Please create the following dummy data files '{files_string}' from the folder '{dummy_data_folder}'\n\n" dummy_data_guidance_print += f"- For each of the splits '{split_names}', make sure that one or more of the dummy data files provide at least one example \n\n" dummy_data_guidance_print += f"- If the method `_generate_examples(...)` includes multiple `open()` statements, you might have to create other files in addition to '{files_string}'. In this case please refer to the `_generate_examples(...)` method \n\n" if len(files_to_create) == 1 and next(iter(files_to_create)) == dummy_file_name: dummy_data_guidance_print += f"- After the dummy data file is created, it should be zipped to '{dummy_file_name}.zip' with the command `zip {dummy_file_name}.zip {dummy_file_name}` \n\n" dummy_data_guidance_print += ( f"- You can now delete the file '{dummy_file_name}' with the command `rm {dummy_file_name}` \n\n" ) dummy_data_guidance_print += f"- To get the file '{dummy_file_name}' back for further changes to the dummy data, simply unzip {dummy_file_name}.zip with the command `unzip {dummy_file_name}.zip` \n\n" else: dummy_data_guidance_print += f"- After all dummy data files are created, they should be zipped recursively to '{dummy_file_name}.zip' with the command `zip -r {dummy_file_name}.zip {dummy_file_name}/` \n\n" dummy_data_guidance_print += ( f"- You can now delete the folder '{dummy_file_name}' with the command `rm -r {dummy_file_name}` \n\n" ) dummy_data_guidance_print += f"- To get the folder '{dummy_file_name}' back for further changes to the dummy data, simply unzip {dummy_file_name}.zip with the command `unzip {dummy_file_name}.zip` \n\n" dummy_data_guidance_print += ( f"- Make sure you have created the file '{dummy_file_name}.zip' in '{dummy_data_folder}' \n" ) dummy_data_guidance_print += 83 * "=" + "\n" print(dummy_data_guidance_print)
datasets-main
src/datasets/commands/dummy_data.py
import os from argparse import ArgumentParser from pathlib import Path from shutil import copyfile from typing import List from datasets import config from datasets.builder import DatasetBuilder from datasets.commands import BaseDatasetsCLICommand from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadMode from datasets.load import dataset_module_factory, import_main_class from datasets.utils.info_utils import VerificationMode def run_beam_command_factory(args, **kwargs): return RunBeamCommand( args.dataset, args.name, args.cache_dir, args.beam_pipeline_options, args.data_dir, args.all_configs, args.save_info or args.save_infos, args.ignore_verifications, args.force_redownload, **kwargs, ) class RunBeamCommand(BaseDatasetsCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): run_beam_parser = parser.add_parser("run_beam", help="Run a Beam dataset processing pipeline") run_beam_parser.add_argument("dataset", type=str, help="Name of the dataset to download") run_beam_parser.add_argument("--name", type=str, default=None, help="Dataset config name") run_beam_parser.add_argument( "--cache_dir", type=str, default=None, help="Cache directory where the datasets are stored", ) run_beam_parser.add_argument( "--beam_pipeline_options", type=str, default="", help="Beam pipeline options, separated by commas. Example:: `--beam_pipeline_options=job_name=my-job,project=my-project`", ) run_beam_parser.add_argument( "--data_dir", type=str, default=None, help="Can be used to specify a manual directory to get the files from", ) run_beam_parser.add_argument("--all_configs", action="store_true", help="Test all dataset configurations") run_beam_parser.add_argument("--save_info", action="store_true", help="Save the dataset infos file") run_beam_parser.add_argument( "--ignore_verifications", action="store_true", help="Run the test without checksums and splits checks" ) run_beam_parser.add_argument("--force_redownload", action="store_true", help="Force dataset redownload") # aliases run_beam_parser.add_argument("--save_infos", action="store_true", help="alias for save_info") run_beam_parser.set_defaults(func=run_beam_command_factory) def __init__( self, dataset: str, name: str, cache_dir: str, beam_pipeline_options: str, data_dir: str, all_configs: bool, save_infos: bool, ignore_verifications: bool, force_redownload: bool, **config_kwargs, ): self._dataset = dataset self._name = name self._cache_dir = cache_dir self._beam_pipeline_options = beam_pipeline_options self._data_dir = data_dir self._all_configs = all_configs self._save_infos = save_infos self._ignore_verifications = ignore_verifications self._force_redownload = force_redownload self._config_kwargs = config_kwargs def run(self): import apache_beam as beam if self._name is not None and self._all_configs: print("Both parameters `name` and `all_configs` can't be used at once.") exit(1) path, config_name = self._dataset, self._name dataset_module = dataset_module_factory(path) builder_cls = import_main_class(dataset_module.module_path) builders: List[DatasetBuilder] = [] if self._beam_pipeline_options: beam_options = beam.options.pipeline_options.PipelineOptions( flags=[f"--{opt.strip()}" for opt in self._beam_pipeline_options.split(",") if opt] ) else: beam_options = None if self._all_configs and len(builder_cls.BUILDER_CONFIGS) > 0: for builder_config in builder_cls.BUILDER_CONFIGS: builders.append( builder_cls( config_name=builder_config.name, data_dir=self._data_dir, hash=dataset_module.hash, beam_options=beam_options, cache_dir=self._cache_dir, base_path=dataset_module.builder_kwargs.get("base_path"), ) ) else: builders.append( builder_cls( config_name=config_name, data_dir=self._data_dir, beam_options=beam_options, cache_dir=self._cache_dir, base_path=dataset_module.builder_kwargs.get("base_path"), **self._config_kwargs, ) ) for builder in builders: builder.download_and_prepare( download_mode=DownloadMode.REUSE_CACHE_IF_EXISTS if not self._force_redownload else DownloadMode.FORCE_REDOWNLOAD, download_config=DownloadConfig(cache_dir=config.DOWNLOADED_DATASETS_PATH), verification_mode=VerificationMode.NO_CHECKS if self._ignore_verifications else VerificationMode.ALL_CHECKS, try_from_hf_gcs=False, ) if self._save_infos: builder._save_infos() print("Apache beam run successful.") # If save_infos=True, the dataset infos file is created next to the loaded module file. # Let's move it to the original directory of the dataset script, to allow the user to # upload them on S3 at the same time afterwards. if self._save_infos: dataset_infos_path = os.path.join(builder_cls.get_imported_module_dir(), config.DATASETDICT_INFOS_FILENAME) name = Path(path).name + ".py" combined_path = os.path.join(path, name) if os.path.isfile(path): dataset_dir = os.path.dirname(path) elif os.path.isfile(combined_path): dataset_dir = path else: # in case of a remote dataset print(f"Dataset Infos file saved at {dataset_infos_path}") exit(1) # Move datasetinfo back to the user user_dataset_infos_path = os.path.join(dataset_dir, config.DATASETDICT_INFOS_FILENAME) copyfile(dataset_infos_path, user_dataset_infos_path) print(f"Dataset Infos file saved at {user_dataset_infos_path}")
datasets-main
src/datasets/commands/run_beam.py
import platform from argparse import ArgumentParser import huggingface_hub import pandas import pyarrow from datasets import __version__ as version from datasets.commands import BaseDatasetsCLICommand def info_command_factory(_): return EnvironmentCommand() class EnvironmentCommand(BaseDatasetsCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): download_parser = parser.add_parser("env", help="Print relevant system environment info.") download_parser.set_defaults(func=info_command_factory) def run(self): info = { "`datasets` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Huggingface_hub version": huggingface_hub.__version__, "PyArrow version": pyarrow.__version__, "Pandas version": pandas.__version__, } print("\nCopy-and-paste the text below in your GitHub issue.\n") print(self.format_dict(info)) return info @staticmethod def format_dict(d): return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n"
datasets-main
src/datasets/commands/env.py
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger HIGHLIGHT_MESSAGE_PRE = """<<<<<<< This should probably be modified because it mentions: """ HIGHLIGHT_MESSAGE_POST = """======= >>>>>>> """ TO_HIGHLIGHT = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] TO_CONVERT = [ # (pattern, replacement) # Order is important here for some replacements (r"tfds\.core", r"datasets"), (r"tf\.io\.gfile\.GFile", r"open"), (r"tf\.([\w\d]+)", r"datasets.Value('\1')"), (r"tfds\.features\.Text\(\)", r"datasets.Value('string')"), (r"tfds\.features\.Text\(", r"datasets.Value('string'),"), (r"features\s*=\s*tfds.features.FeaturesDict\(", r"features=datasets.Features("), (r"tfds\.features\.FeaturesDict\(", r"dict("), (r"The TensorFlow Datasets Authors", r"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (r"tfds\.", r"datasets."), (r"dl_manager\.manual_dir", r"self.config.data_dir"), (r"self\.builder_config", r"self.config"), ] def convert_command_factory(args: Namespace): """ Factory function used to convert a model TF 1.0 checkpoint in a PyTorch checkpoint. Returns: ConvertCommand """ return ConvertCommand(args.tfds_path, args.datasets_directory) class ConvertCommand(BaseDatasetsCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): """ Register this command to argparse so it's available for the datasets-cli Args: parser: Root parser to register command-specific arguments """ train_parser = parser.add_parser( "convert", help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.", ) train_parser.add_argument( "--tfds_path", type=str, required=True, help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.", ) train_parser.add_argument( "--datasets_directory", type=str, required=True, help="Path to the HuggingFace Datasets folder." ) train_parser.set_defaults(func=convert_command_factory) def __init__(self, tfds_path: str, datasets_directory: str, *args): self._logger = get_logger("datasets-cli/converting") self._tfds_path = tfds_path self._datasets_directory = datasets_directory def run(self): if os.path.isdir(self._tfds_path): abs_tfds_path = os.path.abspath(self._tfds_path) elif os.path.isfile(self._tfds_path): abs_tfds_path = os.path.dirname(self._tfds_path) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path.") abs_datasets_path = os.path.abspath(self._datasets_directory) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}") utils_files = [] with_manual_update = [] imports_to_builder_map = {} if os.path.isdir(self._tfds_path): file_names = os.listdir(abs_tfds_path) else: file_names = [os.path.basename(self._tfds_path)] for f_name in file_names: self._logger.info(f"Looking at file {f_name}") input_file = os.path.join(abs_tfds_path, f_name) output_file = os.path.join(abs_datasets_path, f_name) if not os.path.isfile(input_file) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file") continue with open(input_file, encoding="utf-8") as f: lines = f.readlines() out_lines = [] is_builder = False needs_manual_update = False tfds_imports = [] for line in lines: out_line = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: out_line = "import datasets\n" elif "import tensorflow" in out_line: # order is important here out_line = "" continue elif "from absl import logging" in out_line: out_line = "from datasets import logging\n" elif "getLogger" in out_line: out_line = out_line.replace("getLogger", "get_logger") elif any(expression in out_line for expression in TO_HIGHLIGHT): needs_manual_update = True to_remove = list(filter(lambda e: e in out_line, TO_HIGHLIGHT)) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(to_remove) + "\n") out_lines.append(out_line) out_lines.append(HIGHLIGHT_MESSAGE_POST) continue else: for pattern, replacement in TO_CONVERT: out_line = re.sub(pattern, replacement, out_line) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: match = re.match(r"from\stensorflow_datasets.*import\s([^\.\r\n]+)", out_line) tfds_imports.extend(imp.strip() for imp in match.group(1).split(",")) out_line = "from . import " + match.group(1) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}") if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: is_builder = True out_lines.append(out_line) if is_builder or "wmt" in f_name: # We create a new directory for each dataset dir_name = f_name.replace(".py", "") output_dir = os.path.join(abs_datasets_path, dir_name) output_file = os.path.join(output_dir, f_name) os.makedirs(output_dir, exist_ok=True) self._logger.info(f"Adding directory {output_dir}") imports_to_builder_map.update({imp: output_dir for imp in tfds_imports}) else: # Utilities will be moved at the end utils_files.append(output_file) if needs_manual_update: with_manual_update.append(output_file) with open(output_file, "w", encoding="utf-8") as f: f.writelines(out_lines) self._logger.info(f"Converted in {output_file}") for utils_file in utils_files: try: f_name = os.path.basename(utils_file) dest_folder = imports_to_builder_map[f_name.replace(".py", "")] self._logger.info(f"Moving {dest_folder} to {utils_file}") shutil.copy(utils_file, dest_folder) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually.") if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
datasets-main
src/datasets/commands/convert.py
from abc import ABC, abstractmethod from argparse import ArgumentParser class BaseDatasetsCLICommand(ABC): @staticmethod @abstractmethod def register_subcommand(parser: ArgumentParser): raise NotImplementedError() @abstractmethod def run(self): raise NotImplementedError()
datasets-main
src/datasets/commands/__init__.py
import os from argparse import ArgumentParser from pathlib import Path from shutil import copyfile, rmtree from typing import Generator import datasets.config from datasets.builder import DatasetBuilder from datasets.commands import BaseDatasetsCLICommand from datasets.download.download_manager import DownloadMode from datasets.load import dataset_module_factory, import_main_class from datasets.utils.filelock import logger as fl_logger from datasets.utils.info_utils import VerificationMode from datasets.utils.logging import ERROR, get_logger logger = get_logger(__name__) def _test_command_factory(args): return TestCommand( args.dataset, args.name, args.cache_dir, args.data_dir, args.all_configs, args.save_info or args.save_infos, args.ignore_verifications, args.force_redownload, args.clear_cache, ) class TestCommand(BaseDatasetsCLICommand): __test__ = False # to tell pytest it's not a test class @staticmethod def register_subcommand(parser: ArgumentParser): test_parser = parser.add_parser("test", help="Test dataset implementation.") test_parser.add_argument("--name", type=str, default=None, help="Dataset processing name") test_parser.add_argument( "--cache_dir", type=str, default=None, help="Cache directory where the datasets are stored.", ) test_parser.add_argument( "--data_dir", type=str, default=None, help="Can be used to specify a manual directory to get the files from.", ) test_parser.add_argument("--all_configs", action="store_true", help="Test all dataset configurations") test_parser.add_argument( "--save_info", action="store_true", help="Save the dataset infos in the dataset card (README.md)" ) test_parser.add_argument( "--ignore_verifications", action="store_true", help="Run the test without checksums and splits checks.", ) test_parser.add_argument("--force_redownload", action="store_true", help="Force dataset redownload") test_parser.add_argument( "--clear_cache", action="store_true", help="Remove downloaded files and cached datasets after each config test", ) # aliases test_parser.add_argument("--save_infos", action="store_true", help="alias to save_info") test_parser.add_argument("dataset", type=str, help="Name of the dataset to download") test_parser.set_defaults(func=_test_command_factory) def __init__( self, dataset: str, name: str, cache_dir: str, data_dir: str, all_configs: bool, save_infos: bool, ignore_verifications: bool, force_redownload: bool, clear_cache: bool, ): self._dataset = dataset self._name = name self._cache_dir = cache_dir self._data_dir = data_dir self._all_configs = all_configs self._save_infos = save_infos self._ignore_verifications = ignore_verifications self._force_redownload = force_redownload self._clear_cache = clear_cache if clear_cache and not cache_dir: print( "When --clear_cache is used, specifying a cache directory is mandatory.\n" "The 'download' folder of the cache directory and the dataset builder cache will be deleted after each configuration test.\n" "Please provide a --cache_dir that will be used to test the dataset script." ) exit(1) if save_infos: self._ignore_verifications = True def run(self): fl_logger().setLevel(ERROR) if self._name is not None and self._all_configs: print("Both parameters `config` and `all_configs` can't be used at once.") exit(1) path, config_name = self._dataset, self._name module = dataset_module_factory(path) builder_cls = import_main_class(module.module_path) n_builders = len(builder_cls.BUILDER_CONFIGS) if self._all_configs and builder_cls.BUILDER_CONFIGS else 1 def get_builders() -> Generator[DatasetBuilder, None, None]: if self._all_configs and builder_cls.BUILDER_CONFIGS: for i, config in enumerate(builder_cls.BUILDER_CONFIGS): if "config_name" in module.builder_kwargs: yield builder_cls( cache_dir=self._cache_dir, data_dir=self._data_dir, **module.builder_kwargs, ) else: yield builder_cls( config_name=config.name, cache_dir=self._cache_dir, data_dir=self._data_dir, **module.builder_kwargs, ) else: if "config_name" in module.builder_kwargs: yield builder_cls(cache_dir=self._cache_dir, data_dir=self._data_dir, **module.builder_kwargs) else: yield builder_cls( config_name=config_name, cache_dir=self._cache_dir, data_dir=self._data_dir, **module.builder_kwargs, ) for j, builder in enumerate(get_builders()): print(f"Testing builder '{builder.config.name}' ({j + 1}/{n_builders})") builder._record_infos = os.path.exists( os.path.join(builder.get_imported_module_dir(), datasets.config.DATASETDICT_INFOS_FILENAME) ) # record checksums only if we need to update a (deprecated) dataset_infos.json builder.download_and_prepare( download_mode=DownloadMode.REUSE_CACHE_IF_EXISTS if not self._force_redownload else DownloadMode.FORCE_REDOWNLOAD, verification_mode=VerificationMode.NO_CHECKS if self._ignore_verifications else VerificationMode.ALL_CHECKS, try_from_hf_gcs=False, ) builder.as_dataset() if self._save_infos: builder._save_infos() # If save_infos=True, the dataset card (README.md) is created next to the loaded module file. # The dataset_infos are saved in the YAML part of the README.md # Let's move it to the original directory of the dataset script, to allow the user to # upload them on S3 at the same time afterwards. if self._save_infos: dataset_readme_path = os.path.join(builder_cls.get_imported_module_dir(), "README.md") name = Path(path).name + ".py" combined_path = os.path.join(path, name) if os.path.isfile(path): dataset_dir = os.path.dirname(path) elif os.path.isfile(combined_path): dataset_dir = path elif os.path.isdir(path): # for local directories containing only data files dataset_dir = path else: # in case of a remote dataset dataset_dir = None print(f"Dataset card saved at {dataset_readme_path}") # Move dataset_info back to the user if dataset_dir is not None: user_dataset_readme_path = os.path.join(dataset_dir, "README.md") copyfile(dataset_readme_path, user_dataset_readme_path) print(f"Dataset card saved at {user_dataset_readme_path}") # If clear_cache=True, the download folder and the dataset builder cache directory are deleted if self._clear_cache: if os.path.isdir(builder._cache_dir): logger.warning(f"Clearing cache at {builder._cache_dir}") rmtree(builder._cache_dir) download_dir = os.path.join(self._cache_dir, datasets.config.DOWNLOADED_DATASETS_DIR) if os.path.isdir(download_dir): logger.warning(f"Clearing cache at {download_dir}") rmtree(download_dir) print("Test successful.")
datasets-main
src/datasets/commands/test.py
#!/usr/bin/env python from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def parse_unknown_args(unknown_args): return {key.lstrip("-"): value for key, value in zip(unknown_args[::2], unknown_args[1::2])} def main(): parser = ArgumentParser( "HuggingFace Datasets CLI tool", usage="datasets-cli <command> [<args>]", allow_abbrev=False ) commands_parser = parser.add_subparsers(help="datasets-cli command helpers") set_verbosity_info() # Register commands ConvertCommand.register_subcommand(commands_parser) EnvironmentCommand.register_subcommand(commands_parser) TestCommand.register_subcommand(commands_parser) RunBeamCommand.register_subcommand(commands_parser) DummyDataCommand.register_subcommand(commands_parser) # Parse args args, unknown_args = parser.parse_known_args() if not hasattr(args, "func"): parser.print_help() exit(1) kwargs = parse_unknown_args(unknown_args) # Run service = args.func(args, **kwargs) service.run() if __name__ == "__main__": main()
datasets-main
src/datasets/commands/datasets_cli.py
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class BaseCompressedFileFileSystem(AbstractArchiveFileSystem): """Read contents of compressed file as a filesystem with one file inside.""" root_marker = "" protocol: str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) compression: str = None # compression type in fsspec. ex: "gzip" extension: str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self, fo: str = "", target_protocol: Optional[str] = None, target_options: Optional[dict] = None, **kwargs ): """ The compressed file system can be instantiated from any compressed file. It reads the contents of compressed file as a filesystem with one file inside, as if it was an archive. The single file inside the filesystem is named after the compresssed file, without the compression extension at the end of the filename. Args: fo (:obj:``str``): Path to compressed file. Will fetch file using ``fsspec.open()`` mode (:obj:``str``): Currently, only 'rb' accepted target_protocol(:obj:``str``, optional): To override the FS protocol inferred from a URL. target_options (:obj:``dict``, optional): Kwargs passed when instantiating the target FS. """ super().__init__(self, **kwargs) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode self.file = fsspec.open( fo, mode="rb", protocol=target_protocol, compression=self.compression, client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs", {}), # To avoid issues if it was already passed. }, **(target_options or {}), ) self.compressed_name = os.path.basename(self.file.path.split("::")[0]) self.uncompressed_name = ( self.compressed_name[: self.compressed_name.rindex(".")] if "." in self.compressed_name else self.compressed_name ) self.dir_cache = None @classmethod def _strip_protocol(cls, path): # compressed file paths are always relative to the archive root return super()._strip_protocol(path).lstrip("/") def _get_dirs(self): if self.dir_cache is None: f = {**self.file.fs.info(self.file.path), "name": self.uncompressed_name} self.dir_cache = {f["name"]: f} def cat(self, path: str): return self.file.open().read() def _open( self, path: str, mode: str = "rb", block_size=None, autocommit=True, cache_options=None, **kwargs, ): path = self._strip_protocol(path) if mode != "rb": raise ValueError(f"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'") return self.file.open() class Bz2FileSystem(BaseCompressedFileFileSystem): """Read contents of BZ2 file as a filesystem with one file inside.""" protocol = "bz2" compression = "bz2" extension = ".bz2" class GzipFileSystem(BaseCompressedFileFileSystem): """Read contents of GZIP file as a filesystem with one file inside.""" protocol = "gzip" compression = "gzip" extension = ".gz" class Lz4FileSystem(BaseCompressedFileFileSystem): """Read contents of LZ4 file as a filesystem with one file inside.""" protocol = "lz4" compression = "lz4" extension = ".lz4" class XzFileSystem(BaseCompressedFileFileSystem): """Read contents of .xz (LZMA) file as a filesystem with one file inside.""" protocol = "xz" compression = "xz" extension = ".xz" class ZstdFileSystem(BaseCompressedFileFileSystem): """ Read contents of zstd file as a filesystem with one file inside. Note that reading in binary mode with fsspec isn't supported yet: https://github.com/indygreg/python-zstandard/issues/136 """ protocol = "zstd" compression = "zstd" extension = ".zst" def __init__( self, fo: str, mode: str = "rb", target_protocol: Optional[str] = None, target_options: Optional[dict] = None, block_size: int = DEFAULT_BLOCK_SIZE, **kwargs, ): super().__init__( fo=fo, mode=mode, target_protocol=target_protocol, target_options=target_options, block_size=block_size, **kwargs, ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 _enter = self.file.__enter__ class WrappedFile: def __init__(self, file_): self._file = file_ def __enter__(self): self._file.__enter__() return self def __exit__(self, *args, **kwargs): self._file.__exit__(*args, **kwargs) def __iter__(self): return iter(self._file) def __next__(self): return next(self._file) def __getattr__(self, attr): return getattr(self._file, attr) def fixed_enter(*args, **kwargs): return WrappedFile(_enter(*args, **kwargs)) self.file.__enter__ = fixed_enter
datasets-main
src/datasets/filesystems/compression.py