state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
---|---|---|---|---|---|---|
case bound
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β β
a b : β
hf : ContinuousOn f (Icc a b)
B B' : β β β
ha : f a β€ B a
hB : ContinuousOn B (Icc a b)
hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x
bound : β x β Ico a b, β (r : β), B' x < r β βαΆ (z : β) in π[>] x, slope f x z < r
xβ : β
hx : xβ β Icc a b
r : β
hr : r > 0
x : β
aβΒΉ : x β Ico a b
aβ : f x = B x + r * (x - a)
β’ B' x < B' x + r | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
| exact (lt_add_iff_pos_right _).2 hr | /-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
| Mathlib.Analysis.Calculus.MeanValue.149_0.ReDurB0qNQAwk9I | /-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x | Mathlib_Analysis_Calculus_MeanValue |
case a
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β β
a b : β
hf : ContinuousOn f (Icc a b)
B B' : β β β
ha : f a β€ B a
hB : ContinuousOn B (Icc a b)
hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x
bound : β x β Ico a b, β (r : β), B' x < r β βαΆ (z : β) in π[>] x, slope f x z < r
x : β
hx : x β Icc a b
r : β
hr : r > 0
β’ x β Icc a b | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
| exact hx | /-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
| Mathlib.Analysis.Calculus.MeanValue.149_0.ReDurB0qNQAwk9I | /-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β β
a b : β
hf : ContinuousOn f (Icc a b)
B B' : β β β
ha : f a β€ B a
hB : ContinuousOn B (Icc a b)
hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x
bound : β x β Ico a b, β (r : β), B' x < r β βαΆ (z : β) in π[>] x, slope f x z < r
Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a)
β’ β β¦x : ββ¦, x β Icc a b β f x β€ B x | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
| intro x hx | /-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
| Mathlib.Analysis.Calculus.MeanValue.149_0.ReDurB0qNQAwk9I | /-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β β
a b : β
hf : ContinuousOn f (Icc a b)
B B' : β β β
ha : f a β€ B a
hB : ContinuousOn B (Icc a b)
hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x
bound : β x β Ico a b, β (r : β), B' x < r β βαΆ (z : β) in π[>] x, slope f x z < r
Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a)
x : β
hx : x β Icc a b
β’ f x β€ B x | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
| have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const) | /-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
| Mathlib.Analysis.Calculus.MeanValue.149_0.ReDurB0qNQAwk9I | /-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β β
a b : β
hf : ContinuousOn f (Icc a b)
B B' : β β β
ha : f a β€ B a
hB : ContinuousOn B (Icc a b)
hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x
bound : β x β Ico a b, β (r : β), B' x < r β βαΆ (z : β) in π[>] x, slope f x z < r
Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a)
x : β
hx : x β Icc a b
this : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0
β’ f x β€ B x | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
| convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 | /-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
| Mathlib.Analysis.Calculus.MeanValue.149_0.ReDurB0qNQAwk9I | /-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x | Mathlib_Analysis_Calculus_MeanValue |
case h.e'_4
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β β
a b : β
hf : ContinuousOn f (Icc a b)
B B' : β β β
ha : f a β€ B a
hB : ContinuousOn B (Icc a b)
hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x
bound : β x β Ico a b, β (r : β), B' x < r β βαΆ (z : β) in π[>] x, slope f x z < r
Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a)
x : β
hx : x β Icc a b
this : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0
β’ B x = B x + 0 * (x - a) | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> | simp | /-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> | Mathlib.Analysis.Calculus.MeanValue.149_0.ReDurB0qNQAwk9I | /-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β β
a b : β
hf : ContinuousOn f (Icc a b)
B B' : β β β
ha : f a β€ B a
hB : ContinuousOn B (Icc a b)
hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x
bound : β x β Ico a b, β (r : β), B' x < r β βαΆ (z : β) in π[>] x, slope f x z < r
Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a)
x : β
hx : x β Icc a b
this : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0
β’ 0 β closure (Ioi 0) | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> | simp | /-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> | Mathlib.Analysis.Calculus.MeanValue.149_0.ReDurB0qNQAwk9I | /-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
f' : β β E
C : β
hf : ContinuousOn f (Icc a b)
hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x
bound : β x β Ico a b, βf' xβ β€ C
β’ β x β Icc a b, βf x - f aβ β€ C * (x - a) | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
| let g x := f x - f a | /-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
| Mathlib.Analysis.Calculus.MeanValue.337_0.ReDurB0qNQAwk9I | /-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
f' : β β E
C : β
hf : ContinuousOn f (Icc a b)
hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x
bound : β x β Ico a b, βf' xβ β€ C
g : β β E := fun x => f x - f a
β’ β x β Icc a b, βf x - f aβ β€ C * (x - a) | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
| have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const | /-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
| Mathlib.Analysis.Calculus.MeanValue.337_0.ReDurB0qNQAwk9I | /-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
f' : β β E
C : β
hf : ContinuousOn f (Icc a b)
hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x
bound : β x β Ico a b, βf' xβ β€ C
g : β β E := fun x => f x - f a
hg : ContinuousOn g (Icc a b)
β’ β x β Icc a b, βf x - f aβ β€ C * (x - a) | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
| have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _) | /-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
| Mathlib.Analysis.Calculus.MeanValue.337_0.ReDurB0qNQAwk9I | /-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
f' : β β E
C : β
hf : ContinuousOn f (Icc a b)
hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x
bound : β x β Ico a b, βf' xβ β€ C
g : β β E := fun x => f x - f a
hg : ContinuousOn g (Icc a b)
β’ β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
| intro x hx | /-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
| Mathlib.Analysis.Calculus.MeanValue.337_0.ReDurB0qNQAwk9I | /-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
f' : β β E
C : β
hf : ContinuousOn f (Icc a b)
hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x
bound : β x β Ico a b, βf' xβ β€ C
g : β β E := fun x => f x - f a
hg : ContinuousOn g (Icc a b)
x : β
hx : x β Ico a b
β’ HasDerivWithinAt g (f' x) (Ici x) x | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
| simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _) | /-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
| Mathlib.Analysis.Calculus.MeanValue.337_0.ReDurB0qNQAwk9I | /-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
f' : β β E
C : β
hf : ContinuousOn f (Icc a b)
hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x
bound : β x β Ico a b, βf' xβ β€ C
g : β β E := fun x => f x - f a
hg : ContinuousOn g (Icc a b)
hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x
β’ β x β Icc a b, βf x - f aβ β€ C * (x - a) | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
| let B x := C * (x - a) | /-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
| Mathlib.Analysis.Calculus.MeanValue.337_0.ReDurB0qNQAwk9I | /-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
f' : β β E
C : β
hf : ContinuousOn f (Icc a b)
hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x
bound : β x β Ico a b, βf' xβ β€ C
g : β β E := fun x => f x - f a
hg : ContinuousOn g (Icc a b)
hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x
B : β β β := fun x => C * (x - a)
β’ β x β Icc a b, βf x - f aβ β€ C * (x - a) | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
| have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a)) | /-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
| Mathlib.Analysis.Calculus.MeanValue.337_0.ReDurB0qNQAwk9I | /-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
f' : β β E
C : β
hf : ContinuousOn f (Icc a b)
hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x
bound : β x β Ico a b, βf' xβ β€ C
g : β β E := fun x => f x - f a
hg : ContinuousOn g (Icc a b)
hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x
B : β β β := fun x => C * (x - a)
β’ β (x : β), HasDerivAt B C x | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
| intro x | /-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
| Mathlib.Analysis.Calculus.MeanValue.337_0.ReDurB0qNQAwk9I | /-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
f' : β β E
C : β
hf : ContinuousOn f (Icc a b)
hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x
bound : β x β Ico a b, βf' xβ β€ C
g : β β E := fun x => f x - f a
hg : ContinuousOn g (Icc a b)
hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x
B : β β β := fun x => C * (x - a)
x : β
β’ HasDerivAt B C x | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
| simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a)) | /-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
| Mathlib.Analysis.Calculus.MeanValue.337_0.ReDurB0qNQAwk9I | /-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
f' : β β E
C : β
hf : ContinuousOn f (Icc a b)
hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x
bound : β x β Ico a b, βf' xβ β€ C
g : β β E := fun x => f x - f a
hg : ContinuousOn g (Icc a b)
hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x
B : β β β := fun x => C * (x - a)
hB : β (x : β), HasDerivAt B C x
β’ β x β Icc a b, βf x - f aβ β€ C * (x - a) | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
| convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound | /-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
| Mathlib.Analysis.Calculus.MeanValue.337_0.ReDurB0qNQAwk9I | /-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
f' : β β E
C : β
hf : ContinuousOn f (Icc a b)
hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x
bound : β x β Ico a b, βf' xβ β€ C
g : β β E := fun x => f x - f a
hg : ContinuousOn g (Icc a b)
hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x
B : β β β := fun x => C * (x - a)
hB : β (x : β), HasDerivAt B C x
β’ βg aβ β€ B a | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
| simp only | /-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
| Mathlib.Analysis.Calculus.MeanValue.337_0.ReDurB0qNQAwk9I | /-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
f' : β β E
C : β
hf : ContinuousOn f (Icc a b)
hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x
bound : β x β Ico a b, βf' xβ β€ C
g : β β E := fun x => f x - f a
hg : ContinuousOn g (Icc a b)
hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x
B : β β β := fun x => C * (x - a)
hB : β (x : β), HasDerivAt B C x
β’ βf a - f aβ β€ C * (a - a) | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; | rw [sub_self, norm_zero, sub_self, mul_zero] | /-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; | Mathlib.Analysis.Calculus.MeanValue.337_0.ReDurB0qNQAwk9I | /-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
f' : β β E
C : β
hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x
bound : β x β Ico a b, βf' xβ β€ C
β’ β x β Icc a b, βf x - f aβ β€ C * (x - a) | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
| refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound | /-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
| Mathlib.Analysis.Calculus.MeanValue.355_0.ReDurB0qNQAwk9I | /-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
f' : β β E
C : β
hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x
bound : β x β Ico a b, βf' xβ β€ C
x : β
hx : x β Ico a b
β’ HasDerivWithinAt (fun x => f x) (f' x) (Ici x) x | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
| exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx) | /-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
| Mathlib.Analysis.Calculus.MeanValue.355_0.ReDurB0qNQAwk9I | /-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b C : β
hf : DifferentiableOn β f (Icc a b)
bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C
β’ β x β Icc a b, βf x - f aβ β€ C * (x - a) | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
| refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound | /-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
| Mathlib.Analysis.Calculus.MeanValue.367_0.ReDurB0qNQAwk9I | /-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b C : β
hf : DifferentiableOn β f (Icc a b)
bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C
β’ β x β Icc a b, HasDerivWithinAt (fun x => f x) (derivWithin f (Icc a b) x) (Icc a b) x | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
| exact fun x hx => (hf x hx).hasDerivWithinAt | /-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
| Mathlib.Analysis.Calculus.MeanValue.367_0.ReDurB0qNQAwk9I | /-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
f' : β β E
C : β
hf : β x β Icc 0 1, HasDerivWithinAt f (f' x) (Icc 0 1) x
bound : β x β Ico 0 1, βf' xβ β€ C
β’ βf 1 - f 0β β€ C | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
| simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one) | /-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
| Mathlib.Analysis.Calculus.MeanValue.377_0.ReDurB0qNQAwk9I | /-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b C : β
hf : DifferentiableOn β f (Icc 0 1)
bound : β x β Ico 0 1, βderivWithin f (Icc 0 1) xβ β€ C
β’ βf 1 - f 0β β€ C | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
| simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one) | /-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
| Mathlib.Analysis.Calculus.MeanValue.387_0.ReDurB0qNQAwk9I | /-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
hcont : ContinuousOn f (Icc a b)
hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x
β’ β x β Icc a b, f x = f a | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
| have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx | theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
| Mathlib.Analysis.Calculus.MeanValue.396_0.ReDurB0qNQAwk9I | theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
hcont : ContinuousOn f (Icc a b)
hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x
this : β x β Icc a b, βf x - f aβ β€ 0 * (x - a)
β’ β x β Icc a b, f x = f a | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
| simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this | theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
| Mathlib.Analysis.Calculus.MeanValue.396_0.ReDurB0qNQAwk9I | theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
hdiff : DifferentiableOn β f (Icc a b)
hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0
β’ β x β Icc a b, f x = f a | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
| have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx | theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
| Mathlib.Analysis.Calculus.MeanValue.403_0.ReDurB0qNQAwk9I | theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
hdiff : DifferentiableOn β f (Icc a b)
hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0
β’ β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
| simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx | theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
| Mathlib.Analysis.Calculus.MeanValue.403_0.ReDurB0qNQAwk9I | theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
hdiff : DifferentiableOn β f (Icc a b)
hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0
H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0
β’ β x β Icc a b, f x = f a | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
| simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx | theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
| Mathlib.Analysis.Calculus.MeanValue.403_0.ReDurB0qNQAwk9I | theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
f' g : β β E
derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x
derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x
fcont : ContinuousOn f (Icc a b)
gcont : ContinuousOn g (Icc a b)
hi : f a = g a
β’ β y β Icc a b, f y = g y | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
| simp only [β @sub_eq_zero _ _ (f _)] at hi β’ | /-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
| Mathlib.Analysis.Calculus.MeanValue.413_0.ReDurB0qNQAwk9I | /-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
f' g : β β E
derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x
derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x
fcont : ContinuousOn f (Icc a b)
gcont : ContinuousOn g (Icc a b)
hi : f a - g a = 0
β’ β y β Icc a b, f y - g y = 0 | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
| exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy) | /-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
| Mathlib.Analysis.Calculus.MeanValue.413_0.ReDurB0qNQAwk9I | /-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
f' g : β β E
derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x
derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x
fcont : ContinuousOn f (Icc a b)
gcont : ContinuousOn g (Icc a b)
hi : f a - g a = 0
y : β
hy : y β Ico a b
β’ HasDerivWithinAt (fun y => f y - g y) 0 (Ici y) y | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
| simpa only [sub_self] using (derivf y hy).sub (derivg y hy) | /-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
| Mathlib.Analysis.Calculus.MeanValue.413_0.ReDurB0qNQAwk9I | /-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
f' g : β β E
fdiff : DifferentiableOn β f (Icc a b)
gdiff : DifferentiableOn β g (Icc a b)
hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)
hi : f a = g a
β’ β y β Icc a b, f y = g y | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
| have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy) | /-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
| Mathlib.Analysis.Calculus.MeanValue.423_0.ReDurB0qNQAwk9I | /-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
f' g : β β E
fdiff : DifferentiableOn β f (Icc a b)
gdiff : DifferentiableOn β g (Icc a b)
hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)
hi : f a = g a
A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y
β’ β y β Icc a b, f y = g y | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
| have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy) | /-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
| Mathlib.Analysis.Calculus.MeanValue.423_0.ReDurB0qNQAwk9I | /-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f : β β E
a b : β
f' g : β β E
fdiff : DifferentiableOn β f (Icc a b)
gdiff : DifferentiableOn β g (Icc a b)
hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)
hi : f a = g a
A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y
B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y
β’ β y β Icc a b, f y = g y | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
| exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi | /-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
| Mathlib.Analysis.Calculus.MeanValue.423_0.ReDurB0qNQAwk9I | /-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f g : E β G
C : β
s : Set E
x y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hf : β x β s, HasFDerivWithinAt f (f' x) s x
bound : β x β s, βf' xβ β€ C
hs : Convex β s
xs : x β s
ys : y β s
β’ βf y - f xβ β€ C * βy - xβ | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
| letI : NormedSpace β G := RestrictScalars.normedSpace β π G | /-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
| Mathlib.Analysis.Calculus.MeanValue.455_0.ReDurB0qNQAwk9I | /-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f g : E β G
C : β
s : Set E
x y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hf : β x β s, HasFDerivWithinAt f (f' x) s x
bound : β x β s, βf' xβ β€ C
hs : Convex β s
xs : x β s
ys : y β s
this : NormedSpace β G := RestrictScalars.normedSpace β π G
β’ βf y - f xβ β€ C * βy - xβ | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
| set g := (AffineMap.lineMap x y : β β E) | /-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
| Mathlib.Analysis.Calculus.MeanValue.455_0.ReDurB0qNQAwk9I | /-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f gβ : E β G
C : β
s : Set E
x y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hf : β x β s, HasFDerivWithinAt f (f' x) s x
bound : β x β s, βf' xβ β€ C
hs : Convex β s
xs : x β s
ys : y β s
this : NormedSpace β G := RestrictScalars.normedSpace β π G
g : β β E := β(AffineMap.lineMap x y)
β’ βf y - f xβ β€ C * βy - xβ | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
| have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys | /-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
| Mathlib.Analysis.Calculus.MeanValue.455_0.ReDurB0qNQAwk9I | /-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f gβ : E β G
C : β
s : Set E
x y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hf : β x β s, HasFDerivWithinAt f (f' x) s x
bound : β x β s, βf' xβ β€ C
hs : Convex β s
xs : x β s
ys : y β s
this : NormedSpace β G := RestrictScalars.normedSpace β π G
g : β β E := β(AffineMap.lineMap x y)
segm : MapsTo g (Icc 0 1) s
β’ βf y - f xβ β€ C * βy - xβ | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
| have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm | /-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
| Mathlib.Analysis.Calculus.MeanValue.455_0.ReDurB0qNQAwk9I | /-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f gβ : E β G
C : β
s : Set E
x y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hf : β x β s, HasFDerivWithinAt f (f' x) s x
bound : β x β s, βf' xβ β€ C
hs : Convex β s
xs : x β s
ys : y β s
this : NormedSpace β G := RestrictScalars.normedSpace β π G
g : β β E := β(AffineMap.lineMap x y)
segm : MapsTo g (Icc 0 1) s
t : β
ht : t β Icc 0 1
β’ HasDerivWithinAt (f β g) ((f' (g t)) (y - x)) (Icc 0 1) t | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
| simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm | /-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
| Mathlib.Analysis.Calculus.MeanValue.455_0.ReDurB0qNQAwk9I | /-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f gβ : E β G
C : β
s : Set E
x y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hf : β x β s, HasFDerivWithinAt f (f' x) s x
bound : β x β s, βf' xβ β€ C
hs : Convex β s
xs : x β s
ys : y β s
this : NormedSpace β G := RestrictScalars.normedSpace β π G
g : β β E := β(AffineMap.lineMap x y)
segm : MapsTo g (Icc 0 1) s
hD : β t β Icc 0 1, HasDerivWithinAt (f β g) ((f' (g t)) (y - x)) (Icc 0 1) t
β’ βf y - f xβ β€ C * βy - xβ | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
| have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _ | /-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
| Mathlib.Analysis.Calculus.MeanValue.455_0.ReDurB0qNQAwk9I | /-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f gβ : E β G
C : β
s : Set E
x y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hf : β x β s, HasFDerivWithinAt f (f' x) s x
boundβ : β x β s, βf' xβ β€ C
hs : Convex β s
xs : x β s
ys : y β s
this : NormedSpace β G := RestrictScalars.normedSpace β π G
g : β β E := β(AffineMap.lineMap x y)
segm : MapsTo g (Icc 0 1) s
hD : β t β Icc 0 1, HasDerivWithinAt (f β g) ((f' (g t)) (y - x)) (Icc 0 1) t
bound : β t β Ico 0 1, β(f' (g t)) (y - x)β β€ C * βy - xβ
β’ βf y - f xβ β€ C * βy - xβ | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
| simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound | /-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
| Mathlib.Analysis.Calculus.MeanValue.455_0.ReDurB0qNQAwk9I | /-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f g : E β G
Cβ : β
s : Set E
x y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
C : ββ₯0
hf : β x β s, HasFDerivWithinAt f (f' x) s x
bound : β x β s, βf' xββ β€ C
hs : Convex β s
β’ LipschitzOnWith C f s | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
| rw [lipschitzOnWith_iff_norm_sub_le] | /-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
| Mathlib.Analysis.Calculus.MeanValue.476_0.ReDurB0qNQAwk9I | /-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f g : E β G
Cβ : β
s : Set E
x y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
C : ββ₯0
hf : β x β s, HasFDerivWithinAt f (f' x) s x
bound : β x β s, βf' xββ β€ C
hs : Convex β s
β’ β β¦x : Eβ¦, x β s β β β¦y : Eβ¦, y β s β βf x - f yβ β€ βC * βx - yβ | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
| intro x x_in y y_in | /-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
| Mathlib.Analysis.Calculus.MeanValue.476_0.ReDurB0qNQAwk9I | /-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f g : E β G
Cβ : β
s : Set E
xβ yβ : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
C : ββ₯0
hf : β x β s, HasFDerivWithinAt f (f' x) s x
bound : β x β s, βf' xββ β€ C
hs : Convex β s
x : E
x_in : x β s
y : E
y_in : y β s
β’ βf x - f yβ β€ βC * βx - yβ | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
| exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in | /-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
| Mathlib.Analysis.Calculus.MeanValue.476_0.ReDurB0qNQAwk9I | /-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
fβ g : E β G
C : β
s : Set E
x y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hs : Convex β s
f : E β G
hder : βαΆ (y : E) in π[s] x, HasFDerivWithinAt f (f' y) s y
hcont : ContinuousWithinAt f' s x
K : ββ₯0
hK : βf' xββ < K
β’ β t β π[s] x, LipschitzOnWith K f t | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
| obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K } | /-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
| Mathlib.Analysis.Calculus.MeanValue.487_0.ReDurB0qNQAwk9I | /-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
fβ g : E β G
C : β
s : Set E
x y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hs : Convex β s
f : E β G
hder : βαΆ (y : E) in π[s] x, HasFDerivWithinAt f (f' y) s y
hcont : ContinuousWithinAt f' s x
K : ββ₯0
hK : βf' xββ < K
β’ β Ξ΅ > 0, ball x Ξ΅ β© s β {y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K}
case intro.intro
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
fβ g : E β G
C : β
s : Set E
x y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hs : Convex β s
f : E β G
hder : βαΆ (y : E) in π[s] x, HasFDerivWithinAt f (f' y) s y
hcont : ContinuousWithinAt f' s x
K : ββ₯0
hK : βf' xββ < K
Ξ΅ : β
Ξ΅0 : Ξ΅ > 0
hΞ΅ : ball x Ξ΅ β© s β {y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K}
β’ β t β π[s] x, LipschitzOnWith K f t | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
| exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK)) | /-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
| Mathlib.Analysis.Calculus.MeanValue.487_0.ReDurB0qNQAwk9I | /-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t | Mathlib_Analysis_Calculus_MeanValue |
case intro.intro
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
fβ g : E β G
C : β
s : Set E
x y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hs : Convex β s
f : E β G
hder : βαΆ (y : E) in π[s] x, HasFDerivWithinAt f (f' y) s y
hcont : ContinuousWithinAt f' s x
K : ββ₯0
hK : βf' xββ < K
Ξ΅ : β
Ξ΅0 : Ξ΅ > 0
hΞ΅ : ball x Ξ΅ β© s β {y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K}
β’ β t β π[s] x, LipschitzOnWith K f t | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
| rw [inter_comm] at hΞ΅ | /-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
| Mathlib.Analysis.Calculus.MeanValue.487_0.ReDurB0qNQAwk9I | /-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t | Mathlib_Analysis_Calculus_MeanValue |
case intro.intro
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
fβ g : E β G
C : β
s : Set E
x y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hs : Convex β s
f : E β G
hder : βαΆ (y : E) in π[s] x, HasFDerivWithinAt f (f' y) s y
hcont : ContinuousWithinAt f' s x
K : ββ₯0
hK : βf' xββ < K
Ξ΅ : β
Ξ΅0 : Ξ΅ > 0
hΞ΅ : s β© ball x Ξ΅ β {y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K}
β’ β t β π[s] x, LipschitzOnWith K f t | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
| refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β© | /-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
| Mathlib.Analysis.Calculus.MeanValue.487_0.ReDurB0qNQAwk9I | /-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t | Mathlib_Analysis_Calculus_MeanValue |
case intro.intro
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
fβ g : E β G
C : β
s : Set E
x y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hs : Convex β s
f : E β G
hder : βαΆ (y : E) in π[s] x, HasFDerivWithinAt f (f' y) s y
hcont : ContinuousWithinAt f' s x
K : ββ₯0
hK : βf' xββ < K
Ξ΅ : β
Ξ΅0 : Ξ΅ > 0
hΞ΅ : s β© ball x Ξ΅ β {y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K}
β’ LipschitzOnWith K f (s β© ball x Ξ΅) | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
| exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le | /-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
| Mathlib.Analysis.Calculus.MeanValue.487_0.ReDurB0qNQAwk9I | /-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t | Mathlib_Analysis_Calculus_MeanValue |
Eβ : Type u_1
instββΉ : NormedAddCommGroup Eβ
instββΈ : NormedSpace β Eβ
F : Type u_2
instββ· : NormedAddCommGroup F
instββΆ : NormedSpace β F
π : Type u_3
G : Type u_4
instββ΅ : IsROrC π
instββ΄ : NormedSpace π Eβ
instβΒ³ : NormedAddCommGroup G
instβΒ² : NormedSpace π G
fβ g : Eβ β G
Cβ : β
s : Set Eβ
x y : Eβ
f' g' : Eβ β Eβ βL[π] G
Ο : Eβ βL[π] G
E : Type u_5
instβΒΉ : NormedAddCommGroup E
instβ : NormedSpace π E
f : E β G
C : ββ₯0
hf : Differentiable π f
bound : β (x : E), βfderiv π f xββ β€ C
β’ LipschitzWith C f | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
| let A : NormedSpace β E := RestrictScalars.normedSpace β π E | /-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
| Mathlib.Analysis.Calculus.MeanValue.553_0.ReDurB0qNQAwk9I | /-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f | Mathlib_Analysis_Calculus_MeanValue |
Eβ : Type u_1
instββΉ : NormedAddCommGroup Eβ
instββΈ : NormedSpace β Eβ
F : Type u_2
instββ· : NormedAddCommGroup F
instββΆ : NormedSpace β F
π : Type u_3
G : Type u_4
instββ΅ : IsROrC π
instββ΄ : NormedSpace π Eβ
instβΒ³ : NormedAddCommGroup G
instβΒ² : NormedSpace π G
fβ g : Eβ β G
Cβ : β
s : Set Eβ
x y : Eβ
f' g' : Eβ β Eβ βL[π] G
Ο : Eβ βL[π] G
E : Type u_5
instβΒΉ : NormedAddCommGroup E
instβ : NormedSpace π E
f : E β G
C : ββ₯0
hf : Differentiable π f
bound : β (x : E), βfderiv π f xββ β€ C
A : NormedSpace β E := RestrictScalars.normedSpace β π E
β’ LipschitzWith C f | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
| rw [β lipschitzOn_univ] | /-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
| Mathlib.Analysis.Calculus.MeanValue.553_0.ReDurB0qNQAwk9I | /-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f | Mathlib_Analysis_Calculus_MeanValue |
Eβ : Type u_1
instββΉ : NormedAddCommGroup Eβ
instββΈ : NormedSpace β Eβ
F : Type u_2
instββ· : NormedAddCommGroup F
instββΆ : NormedSpace β F
π : Type u_3
G : Type u_4
instββ΅ : IsROrC π
instββ΄ : NormedSpace π Eβ
instβΒ³ : NormedAddCommGroup G
instβΒ² : NormedSpace π G
fβ g : Eβ β G
Cβ : β
s : Set Eβ
x y : Eβ
f' g' : Eβ β Eβ βL[π] G
Ο : Eβ βL[π] G
E : Type u_5
instβΒΉ : NormedAddCommGroup E
instβ : NormedSpace π E
f : E β G
C : ββ₯0
hf : Differentiable π f
bound : β (x : E), βfderiv π f xββ β€ C
A : NormedSpace β E := RestrictScalars.normedSpace β π E
β’ LipschitzOnWith C f univ | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
| exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ | /-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
| Mathlib.Analysis.Calculus.MeanValue.553_0.ReDurB0qNQAwk9I | /-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f g : E β G
C : β
s : Set E
x y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hf : β x β s, HasFDerivWithinAt f (f' x) s x
bound : β x β s, βf' x - Οβ β€ C
hs : Convex β s
xs : x β s
ys : y β s
β’ βf y - f x - Ο (y - x)β β€ C * βy - xβ | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
| let g y := f y - Ο y | /-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
| Mathlib.Analysis.Calculus.MeanValue.563_0.ReDurB0qNQAwk9I | /-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f gβ : E β G
C : β
s : Set E
x y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hf : β x β s, HasFDerivWithinAt f (f' x) s x
bound : β x β s, βf' x - Οβ β€ C
hs : Convex β s
xs : x β s
ys : y β s
g : E β G := fun y => f y - Ο y
β’ βf y - f x - Ο (y - x)β β€ C * βy - xβ | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
| have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt | /-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
| Mathlib.Analysis.Calculus.MeanValue.563_0.ReDurB0qNQAwk9I | /-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f gβ : E β G
C : β
s : Set E
x y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hf : β x β s, HasFDerivWithinAt f (f' x) s x
bound : β x β s, βf' x - Οβ β€ C
hs : Convex β s
xs : x β s
ys : y β s
g : E β G := fun y => f y - Ο y
hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x
β’ βf y - f x - Ο (y - x)β β€ C * βy - xβ | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
| calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys | /-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
| Mathlib.Analysis.Calculus.MeanValue.563_0.ReDurB0qNQAwk9I | /-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f gβ : E β G
C : β
s : Set E
x y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hf : β x β s, HasFDerivWithinAt f (f' x) s x
bound : β x β s, βf' x - Οβ β€ C
hs : Convex β s
xs : x β s
ys : y β s
g : E β G := fun y => f y - Ο y
hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x
β’ βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by | simp | /-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by | Mathlib.Analysis.Calculus.MeanValue.563_0.ReDurB0qNQAwk9I | /-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f gβ : E β G
C : β
s : Set E
x y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hf : β x β s, HasFDerivWithinAt f (f' x) s x
bound : β x β s, βf' x - Οβ β€ C
hs : Convex β s
xs : x β s
ys : y β s
g : E β G := fun y => f y - Ο y
hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x
β’ βf y - f x - (Ο y - Ο x)β = βf y - Ο y - (f x - Ο x)β | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by | congr 1 | /-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by | Mathlib.Analysis.Calculus.MeanValue.563_0.ReDurB0qNQAwk9I | /-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ | Mathlib_Analysis_Calculus_MeanValue |
case e_a
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f gβ : E β G
C : β
s : Set E
x y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hf : β x β s, HasFDerivWithinAt f (f' x) s x
bound : β x β s, βf' x - Οβ β€ C
hs : Convex β s
xs : x β s
ys : y β s
g : E β G := fun y => f y - Ο y
hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x
β’ f y - f x - (Ο y - Ο x) = f y - Ο y - (f x - Ο x) | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; | abel | /-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; | Mathlib.Analysis.Calculus.MeanValue.563_0.ReDurB0qNQAwk9I | /-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ | Mathlib_Analysis_Calculus_MeanValue |
case e_a
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f gβ : E β G
C : β
s : Set E
x y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hf : β x β s, HasFDerivWithinAt f (f' x) s x
bound : β x β s, βf' x - Οβ β€ C
hs : Convex β s
xs : x β s
ys : y β s
g : E β G := fun y => f y - Ο y
hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x
β’ f y - f x - (Ο y - Ο x) = f y - Ο y - (f x - Ο x) | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; | abel | /-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; | Mathlib.Analysis.Calculus.MeanValue.563_0.ReDurB0qNQAwk9I | /-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f gβ : E β G
C : β
s : Set E
x y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hf : β x β s, HasFDerivWithinAt f (f' x) s x
bound : β x β s, βf' x - Οβ β€ C
hs : Convex β s
xs : x β s
ys : y β s
g : E β G := fun y => f y - Ο y
hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x
β’ βf y - Ο y - (f x - Ο x)β = βg y - g xβ | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by | simp | /-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by | Mathlib.Analysis.Calculus.MeanValue.563_0.ReDurB0qNQAwk9I | /-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f g : E β G
C : β
s : Set E
x y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hs : Convex β s
hf : DifferentiableOn π f s
hf' : β x β s, fderivWithin π f s x = 0
hx : x β s
hy : y β s
β’ f x = f y | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
| have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl] | /-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
| Mathlib.Analysis.Calculus.MeanValue.598_0.ReDurB0qNQAwk9I | /-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f g : E β G
C : β
s : Set E
xβ y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hs : Convex β s
hf : DifferentiableOn π f s
hf' : β x β s, fderivWithin π f s x = 0
hxβ : xβ β s
hy : y β s
x : E
hx : x β s
β’ βfderivWithin π f s xβ β€ 0 | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
| simp only [hf' x hx, norm_zero, le_rfl] | /-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
| Mathlib.Analysis.Calculus.MeanValue.598_0.ReDurB0qNQAwk9I | /-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f g : E β G
C : β
s : Set E
x y : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hs : Convex β s
hf : DifferentiableOn π f s
hf' : β x β s, fderivWithin π f s x = 0
hx : x β s
hy : y β s
bound : β x β s, βfderivWithin π f s xβ β€ 0
β’ f x = f y | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
| simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy | /-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
| Mathlib.Analysis.Calculus.MeanValue.598_0.ReDurB0qNQAwk9I | /-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y | Mathlib_Analysis_Calculus_MeanValue |
Eβ : Type u_1
instββΉ : NormedAddCommGroup Eβ
instββΈ : NormedSpace β Eβ
F : Type u_2
instββ· : NormedAddCommGroup F
instββΆ : NormedSpace β F
π : Type u_3
G : Type u_4
instββ΅ : IsROrC π
instββ΄ : NormedSpace π Eβ
instβΒ³ : NormedAddCommGroup G
instβΒ² : NormedSpace π G
fβ g : Eβ β G
C : β
s : Set Eβ
xβ yβ : Eβ
f' g' : Eβ β Eβ βL[π] G
Ο : Eβ βL[π] G
E : Type u_5
instβΒΉ : NormedAddCommGroup E
instβ : NormedSpace π E
f : E β G
hf : Differentiable π f
hf' : β (x : E), fderiv π f x = 0
x y : E
β’ f x = f y | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
| let A : NormedSpace β E := RestrictScalars.normedSpace β π E | theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
| Mathlib.Analysis.Calculus.MeanValue.608_0.ReDurB0qNQAwk9I | theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y | Mathlib_Analysis_Calculus_MeanValue |
Eβ : Type u_1
instββΉ : NormedAddCommGroup Eβ
instββΈ : NormedSpace β Eβ
F : Type u_2
instββ· : NormedAddCommGroup F
instββΆ : NormedSpace β F
π : Type u_3
G : Type u_4
instββ΅ : IsROrC π
instββ΄ : NormedSpace π Eβ
instβΒ³ : NormedAddCommGroup G
instβΒ² : NormedSpace π G
fβ g : Eβ β G
C : β
s : Set Eβ
xβ yβ : Eβ
f' g' : Eβ β Eβ βL[π] G
Ο : Eβ βL[π] G
E : Type u_5
instβΒΉ : NormedAddCommGroup E
instβ : NormedSpace π E
f : E β G
hf : Differentiable π f
hf' : β (x : E), fderiv π f x = 0
x y : E
A : NormedSpace β E := RestrictScalars.normedSpace β π E
β’ f x = f y | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
| exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial | theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
| Mathlib.Analysis.Calculus.MeanValue.608_0.ReDurB0qNQAwk9I | theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y | Mathlib_Analysis_Calculus_MeanValue |
Eβ : Type u_1
instββΉ : NormedAddCommGroup Eβ
instββΈ : NormedSpace β Eβ
F : Type u_2
instββ· : NormedAddCommGroup F
instββΆ : NormedSpace β F
π : Type u_3
G : Type u_4
instββ΅ : IsROrC π
instββ΄ : NormedSpace π Eβ
instβΒ³ : NormedAddCommGroup G
instβΒ² : NormedSpace π G
fβ g : Eβ β G
C : β
s : Set Eβ
xβΒ² yβ : Eβ
f' g' : Eβ β Eβ βL[π] G
Ο : Eβ βL[π] G
E : Type u_5
instβΒΉ : NormedAddCommGroup E
instβ : NormedSpace π E
f : E β G
hf : Differentiable π f
hf' : β (x : E), fderiv π f x = 0
xβΒΉ y : E
A : NormedSpace β E := RestrictScalars.normedSpace β π E
x : E
xβ : x β univ
β’ fderivWithin π f univ x = 0 | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by | rw [fderivWithin_univ] | theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by | Mathlib.Analysis.Calculus.MeanValue.608_0.ReDurB0qNQAwk9I | theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y | Mathlib_Analysis_Calculus_MeanValue |
Eβ : Type u_1
instββΉ : NormedAddCommGroup Eβ
instββΈ : NormedSpace β Eβ
F : Type u_2
instββ· : NormedAddCommGroup F
instββΆ : NormedSpace β F
π : Type u_3
G : Type u_4
instββ΅ : IsROrC π
instββ΄ : NormedSpace π Eβ
instβΒ³ : NormedAddCommGroup G
instβΒ² : NormedSpace π G
fβ g : Eβ β G
C : β
s : Set Eβ
xβΒ² yβ : Eβ
f' g' : Eβ β Eβ βL[π] G
Ο : Eβ βL[π] G
E : Type u_5
instβΒΉ : NormedAddCommGroup E
instβ : NormedSpace π E
f : E β G
hf : Differentiable π f
hf' : β (x : E), fderiv π f x = 0
xβΒΉ y : E
A : NormedSpace β E := RestrictScalars.normedSpace β π E
x : E
xβ : x β univ
β’ fderiv π f x = 0 | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; | exact hf' x | theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; | Mathlib.Analysis.Calculus.MeanValue.608_0.ReDurB0qNQAwk9I | theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f g : E β G
C : β
s : Set E
x yβ : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hs : Convex β s
hf : DifferentiableOn π f s
hg : DifferentiableOn π g s
hs' : UniqueDiffOn π s
hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x
hx : x β s
hfgx : f x = g x
y : E
hy : y β s
β’ f y = g y | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
| suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this | /-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
| Mathlib.Analysis.Calculus.MeanValue.617_0.ReDurB0qNQAwk9I | /-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f g : E β G
C : β
s : Set E
x yβ : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hs : Convex β s
hf : DifferentiableOn π f s
hg : DifferentiableOn π g s
hs' : UniqueDiffOn π s
hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x
hx : x β s
hfgx : f x = g x
y : E
hy : y β s
this : f x - g x = f y - g y
β’ f y = g y | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by | rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this | /-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by | Mathlib.Analysis.Calculus.MeanValue.617_0.ReDurB0qNQAwk9I | /-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f g : E β G
C : β
s : Set E
x yβ : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hs : Convex β s
hf : DifferentiableOn π f s
hg : DifferentiableOn π g s
hs' : UniqueDiffOn π s
hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x
hx : x β s
hfgx : f x = g x
y : E
hy : y β s
β’ f x - g x = f y - g y | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
| refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy | /-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
| Mathlib.Analysis.Calculus.MeanValue.617_0.ReDurB0qNQAwk9I | /-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f g : E β G
C : β
s : Set E
x yβ : E
f' g' : E β E βL[π] G
Ο : E βL[π] G
hs : Convex β s
hf : DifferentiableOn π f s
hg : DifferentiableOn π g s
hs' : UniqueDiffOn π s
hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x
hx : x β s
hfgx : f x = g x
y : E
hy : y β s
z : E
hz : z β s
β’ fderivWithin π (fun y => f y - g y) s z = 0 | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
| rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz] | /-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
| Mathlib.Analysis.Calculus.MeanValue.617_0.ReDurB0qNQAwk9I | /-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g | Mathlib_Analysis_Calculus_MeanValue |
Eβ : Type u_1
instββΉ : NormedAddCommGroup Eβ
instββΈ : NormedSpace β Eβ
F : Type u_2
instββ· : NormedAddCommGroup F
instββΆ : NormedSpace β F
π : Type u_3
G : Type u_4
instββ΅ : IsROrC π
instββ΄ : NormedSpace π Eβ
instβΒ³ : NormedAddCommGroup G
instβΒ² : NormedSpace π G
fβ gβ : Eβ β G
C : β
s : Set Eβ
xβ y : Eβ
f' g' : Eβ β Eβ βL[π] G
Ο : Eβ βL[π] G
E : Type u_5
instβΒΉ : NormedAddCommGroup E
instβ : NormedSpace π E
f g : E β G
hf : Differentiable π f
hg : Differentiable π g
hf' : β (x : E), fderiv π f x = fderiv π g x
x : E
hfgx : f x = g x
β’ f = g | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
| let A : NormedSpace β E := RestrictScalars.normedSpace β π E | theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
| Mathlib.Analysis.Calculus.MeanValue.628_0.ReDurB0qNQAwk9I | theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g | Mathlib_Analysis_Calculus_MeanValue |
Eβ : Type u_1
instββΉ : NormedAddCommGroup Eβ
instββΈ : NormedSpace β Eβ
F : Type u_2
instββ· : NormedAddCommGroup F
instββΆ : NormedSpace β F
π : Type u_3
G : Type u_4
instββ΅ : IsROrC π
instββ΄ : NormedSpace π Eβ
instβΒ³ : NormedAddCommGroup G
instβΒ² : NormedSpace π G
fβ gβ : Eβ β G
C : β
s : Set Eβ
xβ y : Eβ
f' g' : Eβ β Eβ βL[π] G
Ο : Eβ βL[π] G
E : Type u_5
instβΒΉ : NormedAddCommGroup E
instβ : NormedSpace π E
f g : E β G
hf : Differentiable π f
hg : Differentiable π g
hf' : β (x : E), fderiv π f x = fderiv π g x
x : E
hfgx : f x = g x
A : NormedSpace β E := RestrictScalars.normedSpace β π E
β’ f = g | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
| suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x | theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
| Mathlib.Analysis.Calculus.MeanValue.628_0.ReDurB0qNQAwk9I | theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g | Mathlib_Analysis_Calculus_MeanValue |
Eβ : Type u_1
instββΉ : NormedAddCommGroup Eβ
instββΈ : NormedSpace β Eβ
F : Type u_2
instββ· : NormedAddCommGroup F
instββΆ : NormedSpace β F
π : Type u_3
G : Type u_4
instββ΅ : IsROrC π
instββ΄ : NormedSpace π Eβ
instβΒ³ : NormedAddCommGroup G
instβΒ² : NormedSpace π G
fβ gβ : Eβ β G
C : β
s : Set Eβ
xβ y : Eβ
f' g' : Eβ β Eβ βL[π] G
Ο : Eβ βL[π] G
E : Type u_5
instβΒΉ : NormedAddCommGroup E
instβ : NormedSpace π E
f g : E β G
hf : Differentiable π f
hg : Differentiable π g
hf' : β (x : E), fderiv π f x = fderiv π g x
x : E
hfgx : f x = g x
A : NormedSpace β E := RestrictScalars.normedSpace β π E
β’ EqOn f g univ | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
| exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by simpa using hf' _) (mem_univ _) hfgx | theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
| Mathlib.Analysis.Calculus.MeanValue.628_0.ReDurB0qNQAwk9I | theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g | Mathlib_Analysis_Calculus_MeanValue |
Eβ : Type u_1
instββΉ : NormedAddCommGroup Eβ
instββΈ : NormedSpace β Eβ
F : Type u_2
instββ· : NormedAddCommGroup F
instββΆ : NormedSpace β F
π : Type u_3
G : Type u_4
instββ΅ : IsROrC π
instββ΄ : NormedSpace π Eβ
instβΒ³ : NormedAddCommGroup G
instβΒ² : NormedSpace π G
fβ gβ : Eβ β G
C : β
s : Set Eβ
xβΒ² y : Eβ
f' g' : Eβ β Eβ βL[π] G
Ο : Eβ βL[π] G
E : Type u_5
instβΒΉ : NormedAddCommGroup E
instβ : NormedSpace π E
f g : E β G
hf : Differentiable π f
hg : Differentiable π g
hf' : β (x : E), fderiv π f x = fderiv π g x
xβΒΉ : E
hfgx : f xβΒΉ = g xβΒΉ
A : NormedSpace β E := RestrictScalars.normedSpace β π E
x : E
xβ : x β univ
β’ fderivWithin π f univ x = fderivWithin π g univ x | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by | simpa using hf' _ | theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by | Mathlib.Analysis.Calculus.MeanValue.628_0.ReDurB0qNQAwk9I | theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f f' : π β G
s : Set π
xβ y : π
C : β
hf : β x β s, HasDerivWithinAt f (f' x) s x
bound : β x β s, βf' xβ β€ C
hs : Convex β s
xs : xβ β s
ys : y β s
x : π
hx : x β s
β’ βsmulRight 1 (f' x)β β€ βf' xβ | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by simpa using hf' _) (mem_univ _) hfgx
#align eq_of_fderiv_eq eq_of_fderiv_eq
end Convex
namespace Convex
variable {f f' : π β G} {s : Set π} {x y : π}
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `HasDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasDerivWithin_le {C : β}
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ :=
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by | simp | /-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `HasDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasDerivWithin_le {C : β}
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ :=
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by | Mathlib.Analysis.Calculus.MeanValue.644_0.ReDurB0qNQAwk9I | /-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `HasDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasDerivWithin_le {C : β}
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f f' : π β G
s : Set π
xβ y : π
C : ββ₯0
hs : Convex β s
hf : β x β s, HasDerivWithinAt f (f' x) s x
bound : β x β s, βf' xββ β€ C
x : π
hx : x β s
β’ βsmulRight 1 (f' x)ββ β€ βf' xββ | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by simpa using hf' _) (mem_univ _) hfgx
#align eq_of_fderiv_eq eq_of_fderiv_eq
end Convex
namespace Convex
variable {f f' : π β G} {s : Set π} {x y : π}
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `HasDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasDerivWithin_le {C : β}
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ :=
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs xs ys
#align convex.norm_image_sub_le_of_norm_has_deriv_within_le Convex.norm_image_sub_le_of_norm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `HasDerivWithinAt` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasDerivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C) :
LipschitzOnWith C f s :=
Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by | simp | /-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `HasDerivWithinAt` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasDerivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C) :
LipschitzOnWith C f s :=
Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by | Mathlib.Analysis.Calculus.MeanValue.653_0.ReDurB0qNQAwk9I | /-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `HasDerivWithinAt` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasDerivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C) :
LipschitzOnWith C f s | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f f' : π β G
s : Set π
xβ yβ : π
hf : Differentiable π f
hf' : β (x : π), deriv f x = 0
x y z : π
β’ fderiv π f z = 0 | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by simpa using hf' _) (mem_univ _) hfgx
#align eq_of_fderiv_eq eq_of_fderiv_eq
end Convex
namespace Convex
variable {f f' : π β G} {s : Set π} {x y : π}
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `HasDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasDerivWithin_le {C : β}
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ :=
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs xs ys
#align convex.norm_image_sub_le_of_norm_has_deriv_within_le Convex.norm_image_sub_le_of_norm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `HasDerivWithinAt` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasDerivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C) :
LipschitzOnWith C f s :=
Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs
#align convex.lipschitz_on_with_of_nnnorm_has_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function within
this set is bounded by `C`, then the function is `C`-Lipschitz. Version with `derivWithin` -/
theorem norm_image_sub_le_of_norm_derivWithin_le {C : β} (hf : DifferentiableOn π f s)
(bound : β x β s, βderivWithin f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound xs
ys
#align convex.norm_image_sub_le_of_norm_deriv_within_le Convex.norm_image_sub_le_of_norm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `derivWithin` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_derivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : DifferentiableOn π f s) (bound : β x β s, βderivWithin f s xββ β€ C) :
LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `deriv`. -/
theorem norm_image_sub_le_of_norm_deriv_le {C : β} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_deriv_le Convex.norm_image_sub_le_of_norm_deriv_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `deriv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_le Convex.lipschitzOnWith_of_nnnorm_deriv_le
/-- The mean value theorem set in dimension 1: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `deriv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βderiv f xββ β€ C) : LipschitzWith C f :=
lipschitzOn_univ.1 <|
convex_univ.lipschitzOnWith_of_nnnorm_deriv_le (fun x _ => hf x) fun x _ => bound x
#align lipschitz_with_of_nnnorm_deriv_le lipschitzWith_of_nnnorm_deriv_le
/-- If `f : π β G`, `π = R` or `π = β`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : Differentiable π f) (hf' : β x, deriv f x = 0)
(x y : π) : f x = f y :=
is_const_of_fderiv_eq_zero hf (fun z => by | ext | /-- If `f : π β G`, `π = R` or `π = β`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : Differentiable π f) (hf' : β x, deriv f x = 0)
(x y : π) : f x = f y :=
is_const_of_fderiv_eq_zero hf (fun z => by | Mathlib.Analysis.Calculus.MeanValue.707_0.ReDurB0qNQAwk9I | /-- If `f : π β G`, `π = R` or `π = β`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : Differentiable π f) (hf' : β x, deriv f x = 0)
(x y : π) : f x = f y | Mathlib_Analysis_Calculus_MeanValue |
case h
E : Type u_1
instββ· : NormedAddCommGroup E
instββΆ : NormedSpace β E
F : Type u_2
instββ΅ : NormedAddCommGroup F
instββ΄ : NormedSpace β F
π : Type u_3
G : Type u_4
instβΒ³ : IsROrC π
instβΒ² : NormedSpace π E
instβΒΉ : NormedAddCommGroup G
instβ : NormedSpace π G
f f' : π β G
s : Set π
xβ yβ : π
hf : Differentiable π f
hf' : β (x : π), deriv f x = 0
x y z : π
β’ (fderiv π f z) 1 = 0 1 | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by simpa using hf' _) (mem_univ _) hfgx
#align eq_of_fderiv_eq eq_of_fderiv_eq
end Convex
namespace Convex
variable {f f' : π β G} {s : Set π} {x y : π}
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `HasDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasDerivWithin_le {C : β}
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ :=
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs xs ys
#align convex.norm_image_sub_le_of_norm_has_deriv_within_le Convex.norm_image_sub_le_of_norm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `HasDerivWithinAt` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasDerivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C) :
LipschitzOnWith C f s :=
Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs
#align convex.lipschitz_on_with_of_nnnorm_has_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function within
this set is bounded by `C`, then the function is `C`-Lipschitz. Version with `derivWithin` -/
theorem norm_image_sub_le_of_norm_derivWithin_le {C : β} (hf : DifferentiableOn π f s)
(bound : β x β s, βderivWithin f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound xs
ys
#align convex.norm_image_sub_le_of_norm_deriv_within_le Convex.norm_image_sub_le_of_norm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `derivWithin` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_derivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : DifferentiableOn π f s) (bound : β x β s, βderivWithin f s xββ β€ C) :
LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `deriv`. -/
theorem norm_image_sub_le_of_norm_deriv_le {C : β} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_deriv_le Convex.norm_image_sub_le_of_norm_deriv_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `deriv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_le Convex.lipschitzOnWith_of_nnnorm_deriv_le
/-- The mean value theorem set in dimension 1: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `deriv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βderiv f xββ β€ C) : LipschitzWith C f :=
lipschitzOn_univ.1 <|
convex_univ.lipschitzOnWith_of_nnnorm_deriv_le (fun x _ => hf x) fun x _ => bound x
#align lipschitz_with_of_nnnorm_deriv_le lipschitzWith_of_nnnorm_deriv_le
/-- If `f : π β G`, `π = R` or `π = β`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : Differentiable π f) (hf' : β x, deriv f x = 0)
(x y : π) : f x = f y :=
is_const_of_fderiv_eq_zero hf (fun z => by ext; | simp [β deriv_fderiv, hf'] | /-- If `f : π β G`, `π = R` or `π = β`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : Differentiable π f) (hf' : β x, deriv f x = 0)
(x y : π) : f x = f y :=
is_const_of_fderiv_eq_zero hf (fun z => by ext; | Mathlib.Analysis.Calculus.MeanValue.707_0.ReDurB0qNQAwk9I | /-- If `f : π β G`, `π = R` or `π = β`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : Differentiable π f) (hf' : β x, deriv f x = 0)
(x y : π) : f x = f y | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f f' : β β β
a b : β
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff' : β x β Ioo a b, HasDerivAt f (f' x) x
hfd : DifferentiableOn β f (Ioo a b)
g g' : β β β
hgc : ContinuousOn g (Icc a b)
hgg' : β x β Ioo a b, HasDerivAt g (g' x) x
hgd : DifferentiableOn β g (Ioo a b)
β’ β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by simpa using hf' _) (mem_univ _) hfgx
#align eq_of_fderiv_eq eq_of_fderiv_eq
end Convex
namespace Convex
variable {f f' : π β G} {s : Set π} {x y : π}
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `HasDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasDerivWithin_le {C : β}
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ :=
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs xs ys
#align convex.norm_image_sub_le_of_norm_has_deriv_within_le Convex.norm_image_sub_le_of_norm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `HasDerivWithinAt` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasDerivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C) :
LipschitzOnWith C f s :=
Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs
#align convex.lipschitz_on_with_of_nnnorm_has_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function within
this set is bounded by `C`, then the function is `C`-Lipschitz. Version with `derivWithin` -/
theorem norm_image_sub_le_of_norm_derivWithin_le {C : β} (hf : DifferentiableOn π f s)
(bound : β x β s, βderivWithin f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound xs
ys
#align convex.norm_image_sub_le_of_norm_deriv_within_le Convex.norm_image_sub_le_of_norm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `derivWithin` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_derivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : DifferentiableOn π f s) (bound : β x β s, βderivWithin f s xββ β€ C) :
LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `deriv`. -/
theorem norm_image_sub_le_of_norm_deriv_le {C : β} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_deriv_le Convex.norm_image_sub_le_of_norm_deriv_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `deriv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_le Convex.lipschitzOnWith_of_nnnorm_deriv_le
/-- The mean value theorem set in dimension 1: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `deriv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βderiv f xββ β€ C) : LipschitzWith C f :=
lipschitzOn_univ.1 <|
convex_univ.lipschitzOnWith_of_nnnorm_deriv_le (fun x _ => hf x) fun x _ => bound x
#align lipschitz_with_of_nnnorm_deriv_le lipschitzWith_of_nnnorm_deriv_le
/-- If `f : π β G`, `π = R` or `π = β`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : Differentiable π f) (hf' : β x, deriv f x = 0)
(x y : π) : f x = f y :=
is_const_of_fderiv_eq_zero hf (fun z => by ext; simp [β deriv_fderiv, hf']) _ _
#align is_const_of_deriv_eq_zero is_const_of_deriv_eq_zero
end Convex
end
/-! ### Functions `[a, b] β β`. -/
section Interval
-- Declare all variables here to make sure they come in a correct order
variable (f f' : β β β) {a b : β} (hab : a < b) (hfc : ContinuousOn f (Icc a b))
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hfd : DifferentiableOn β f (Ioo a b))
(g g' : β β β) (hgc : ContinuousOn g (Icc a b)) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hgd : DifferentiableOn β g (Ioo a b))
/-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
| let h x := (g b - g a) * f x - (f b - f a) * g x | /-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
| Mathlib.Analysis.Calculus.MeanValue.728_0.ReDurB0qNQAwk9I | /-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f f' : β β β
a b : β
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff' : β x β Ioo a b, HasDerivAt f (f' x) x
hfd : DifferentiableOn β f (Ioo a b)
g g' : β β β
hgc : ContinuousOn g (Icc a b)
hgg' : β x β Ioo a b, HasDerivAt g (g' x) x
hgd : DifferentiableOn β g (Ioo a b)
h : β β β := fun x => (g b - g a) * f x - (f b - f a) * g x
β’ β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by simpa using hf' _) (mem_univ _) hfgx
#align eq_of_fderiv_eq eq_of_fderiv_eq
end Convex
namespace Convex
variable {f f' : π β G} {s : Set π} {x y : π}
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `HasDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasDerivWithin_le {C : β}
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ :=
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs xs ys
#align convex.norm_image_sub_le_of_norm_has_deriv_within_le Convex.norm_image_sub_le_of_norm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `HasDerivWithinAt` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasDerivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C) :
LipschitzOnWith C f s :=
Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs
#align convex.lipschitz_on_with_of_nnnorm_has_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function within
this set is bounded by `C`, then the function is `C`-Lipschitz. Version with `derivWithin` -/
theorem norm_image_sub_le_of_norm_derivWithin_le {C : β} (hf : DifferentiableOn π f s)
(bound : β x β s, βderivWithin f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound xs
ys
#align convex.norm_image_sub_le_of_norm_deriv_within_le Convex.norm_image_sub_le_of_norm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `derivWithin` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_derivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : DifferentiableOn π f s) (bound : β x β s, βderivWithin f s xββ β€ C) :
LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `deriv`. -/
theorem norm_image_sub_le_of_norm_deriv_le {C : β} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_deriv_le Convex.norm_image_sub_le_of_norm_deriv_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `deriv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_le Convex.lipschitzOnWith_of_nnnorm_deriv_le
/-- The mean value theorem set in dimension 1: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `deriv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βderiv f xββ β€ C) : LipschitzWith C f :=
lipschitzOn_univ.1 <|
convex_univ.lipschitzOnWith_of_nnnorm_deriv_le (fun x _ => hf x) fun x _ => bound x
#align lipschitz_with_of_nnnorm_deriv_le lipschitzWith_of_nnnorm_deriv_le
/-- If `f : π β G`, `π = R` or `π = β`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : Differentiable π f) (hf' : β x, deriv f x = 0)
(x y : π) : f x = f y :=
is_const_of_fderiv_eq_zero hf (fun z => by ext; simp [β deriv_fderiv, hf']) _ _
#align is_const_of_deriv_eq_zero is_const_of_deriv_eq_zero
end Convex
end
/-! ### Functions `[a, b] β β`. -/
section Interval
-- Declare all variables here to make sure they come in a correct order
variable (f f' : β β β) {a b : β} (hab : a < b) (hfc : ContinuousOn f (Icc a b))
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hfd : DifferentiableOn β f (Ioo a b))
(g g' : β β β) (hgc : ContinuousOn g (Icc a b)) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hgd : DifferentiableOn β g (Ioo a b))
/-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
| have hI : h a = h b := by simp only; ring | /-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
| Mathlib.Analysis.Calculus.MeanValue.728_0.ReDurB0qNQAwk9I | /-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f f' : β β β
a b : β
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff' : β x β Ioo a b, HasDerivAt f (f' x) x
hfd : DifferentiableOn β f (Ioo a b)
g g' : β β β
hgc : ContinuousOn g (Icc a b)
hgg' : β x β Ioo a b, HasDerivAt g (g' x) x
hgd : DifferentiableOn β g (Ioo a b)
h : β β β := fun x => (g b - g a) * f x - (f b - f a) * g x
β’ h a = h b | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by simpa using hf' _) (mem_univ _) hfgx
#align eq_of_fderiv_eq eq_of_fderiv_eq
end Convex
namespace Convex
variable {f f' : π β G} {s : Set π} {x y : π}
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `HasDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasDerivWithin_le {C : β}
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ :=
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs xs ys
#align convex.norm_image_sub_le_of_norm_has_deriv_within_le Convex.norm_image_sub_le_of_norm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `HasDerivWithinAt` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasDerivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C) :
LipschitzOnWith C f s :=
Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs
#align convex.lipschitz_on_with_of_nnnorm_has_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function within
this set is bounded by `C`, then the function is `C`-Lipschitz. Version with `derivWithin` -/
theorem norm_image_sub_le_of_norm_derivWithin_le {C : β} (hf : DifferentiableOn π f s)
(bound : β x β s, βderivWithin f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound xs
ys
#align convex.norm_image_sub_le_of_norm_deriv_within_le Convex.norm_image_sub_le_of_norm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `derivWithin` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_derivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : DifferentiableOn π f s) (bound : β x β s, βderivWithin f s xββ β€ C) :
LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `deriv`. -/
theorem norm_image_sub_le_of_norm_deriv_le {C : β} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_deriv_le Convex.norm_image_sub_le_of_norm_deriv_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `deriv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_le Convex.lipschitzOnWith_of_nnnorm_deriv_le
/-- The mean value theorem set in dimension 1: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `deriv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βderiv f xββ β€ C) : LipschitzWith C f :=
lipschitzOn_univ.1 <|
convex_univ.lipschitzOnWith_of_nnnorm_deriv_le (fun x _ => hf x) fun x _ => bound x
#align lipschitz_with_of_nnnorm_deriv_le lipschitzWith_of_nnnorm_deriv_le
/-- If `f : π β G`, `π = R` or `π = β`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : Differentiable π f) (hf' : β x, deriv f x = 0)
(x y : π) : f x = f y :=
is_const_of_fderiv_eq_zero hf (fun z => by ext; simp [β deriv_fderiv, hf']) _ _
#align is_const_of_deriv_eq_zero is_const_of_deriv_eq_zero
end Convex
end
/-! ### Functions `[a, b] β β`. -/
section Interval
-- Declare all variables here to make sure they come in a correct order
variable (f f' : β β β) {a b : β} (hab : a < b) (hfc : ContinuousOn f (Icc a b))
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hfd : DifferentiableOn β f (Ioo a b))
(g g' : β β β) (hgc : ContinuousOn g (Icc a b)) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hgd : DifferentiableOn β g (Ioo a b))
/-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
have hI : h a = h b := by | simp only | /-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
have hI : h a = h b := by | Mathlib.Analysis.Calculus.MeanValue.728_0.ReDurB0qNQAwk9I | /-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f f' : β β β
a b : β
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff' : β x β Ioo a b, HasDerivAt f (f' x) x
hfd : DifferentiableOn β f (Ioo a b)
g g' : β β β
hgc : ContinuousOn g (Icc a b)
hgg' : β x β Ioo a b, HasDerivAt g (g' x) x
hgd : DifferentiableOn β g (Ioo a b)
h : β β β := fun x => (g b - g a) * f x - (f b - f a) * g x
β’ (g b - g a) * f a - (f b - f a) * g a = (g b - g a) * f b - (f b - f a) * g b | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by simpa using hf' _) (mem_univ _) hfgx
#align eq_of_fderiv_eq eq_of_fderiv_eq
end Convex
namespace Convex
variable {f f' : π β G} {s : Set π} {x y : π}
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `HasDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasDerivWithin_le {C : β}
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ :=
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs xs ys
#align convex.norm_image_sub_le_of_norm_has_deriv_within_le Convex.norm_image_sub_le_of_norm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `HasDerivWithinAt` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasDerivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C) :
LipschitzOnWith C f s :=
Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs
#align convex.lipschitz_on_with_of_nnnorm_has_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function within
this set is bounded by `C`, then the function is `C`-Lipschitz. Version with `derivWithin` -/
theorem norm_image_sub_le_of_norm_derivWithin_le {C : β} (hf : DifferentiableOn π f s)
(bound : β x β s, βderivWithin f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound xs
ys
#align convex.norm_image_sub_le_of_norm_deriv_within_le Convex.norm_image_sub_le_of_norm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `derivWithin` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_derivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : DifferentiableOn π f s) (bound : β x β s, βderivWithin f s xββ β€ C) :
LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `deriv`. -/
theorem norm_image_sub_le_of_norm_deriv_le {C : β} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_deriv_le Convex.norm_image_sub_le_of_norm_deriv_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `deriv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_le Convex.lipschitzOnWith_of_nnnorm_deriv_le
/-- The mean value theorem set in dimension 1: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `deriv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βderiv f xββ β€ C) : LipschitzWith C f :=
lipschitzOn_univ.1 <|
convex_univ.lipschitzOnWith_of_nnnorm_deriv_le (fun x _ => hf x) fun x _ => bound x
#align lipschitz_with_of_nnnorm_deriv_le lipschitzWith_of_nnnorm_deriv_le
/-- If `f : π β G`, `π = R` or `π = β`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : Differentiable π f) (hf' : β x, deriv f x = 0)
(x y : π) : f x = f y :=
is_const_of_fderiv_eq_zero hf (fun z => by ext; simp [β deriv_fderiv, hf']) _ _
#align is_const_of_deriv_eq_zero is_const_of_deriv_eq_zero
end Convex
end
/-! ### Functions `[a, b] β β`. -/
section Interval
-- Declare all variables here to make sure they come in a correct order
variable (f f' : β β β) {a b : β} (hab : a < b) (hfc : ContinuousOn f (Icc a b))
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hfd : DifferentiableOn β f (Ioo a b))
(g g' : β β β) (hgc : ContinuousOn g (Icc a b)) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hgd : DifferentiableOn β g (Ioo a b))
/-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
have hI : h a = h b := by simp only; | ring | /-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
have hI : h a = h b := by simp only; | Mathlib.Analysis.Calculus.MeanValue.728_0.ReDurB0qNQAwk9I | /-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f f' : β β β
a b : β
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff' : β x β Ioo a b, HasDerivAt f (f' x) x
hfd : DifferentiableOn β f (Ioo a b)
g g' : β β β
hgc : ContinuousOn g (Icc a b)
hgg' : β x β Ioo a b, HasDerivAt g (g' x) x
hgd : DifferentiableOn β g (Ioo a b)
h : β β β := fun x => (g b - g a) * f x - (f b - f a) * g x
hI : h a = h b
β’ β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by simpa using hf' _) (mem_univ _) hfgx
#align eq_of_fderiv_eq eq_of_fderiv_eq
end Convex
namespace Convex
variable {f f' : π β G} {s : Set π} {x y : π}
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `HasDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasDerivWithin_le {C : β}
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ :=
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs xs ys
#align convex.norm_image_sub_le_of_norm_has_deriv_within_le Convex.norm_image_sub_le_of_norm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `HasDerivWithinAt` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasDerivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C) :
LipschitzOnWith C f s :=
Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs
#align convex.lipschitz_on_with_of_nnnorm_has_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function within
this set is bounded by `C`, then the function is `C`-Lipschitz. Version with `derivWithin` -/
theorem norm_image_sub_le_of_norm_derivWithin_le {C : β} (hf : DifferentiableOn π f s)
(bound : β x β s, βderivWithin f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound xs
ys
#align convex.norm_image_sub_le_of_norm_deriv_within_le Convex.norm_image_sub_le_of_norm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `derivWithin` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_derivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : DifferentiableOn π f s) (bound : β x β s, βderivWithin f s xββ β€ C) :
LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `deriv`. -/
theorem norm_image_sub_le_of_norm_deriv_le {C : β} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_deriv_le Convex.norm_image_sub_le_of_norm_deriv_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `deriv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_le Convex.lipschitzOnWith_of_nnnorm_deriv_le
/-- The mean value theorem set in dimension 1: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `deriv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βderiv f xββ β€ C) : LipschitzWith C f :=
lipschitzOn_univ.1 <|
convex_univ.lipschitzOnWith_of_nnnorm_deriv_le (fun x _ => hf x) fun x _ => bound x
#align lipschitz_with_of_nnnorm_deriv_le lipschitzWith_of_nnnorm_deriv_le
/-- If `f : π β G`, `π = R` or `π = β`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : Differentiable π f) (hf' : β x, deriv f x = 0)
(x y : π) : f x = f y :=
is_const_of_fderiv_eq_zero hf (fun z => by ext; simp [β deriv_fderiv, hf']) _ _
#align is_const_of_deriv_eq_zero is_const_of_deriv_eq_zero
end Convex
end
/-! ### Functions `[a, b] β β`. -/
section Interval
-- Declare all variables here to make sure they come in a correct order
variable (f f' : β β β) {a b : β} (hab : a < b) (hfc : ContinuousOn f (Icc a b))
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hfd : DifferentiableOn β f (Ioo a b))
(g g' : β β β) (hgc : ContinuousOn g (Icc a b)) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hgd : DifferentiableOn β g (Ioo a b))
/-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
have hI : h a = h b := by simp only; ring
| let h' x := (g b - g a) * f' x - (f b - f a) * g' x | /-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
have hI : h a = h b := by simp only; ring
| Mathlib.Analysis.Calculus.MeanValue.728_0.ReDurB0qNQAwk9I | /-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f f' : β β β
a b : β
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff' : β x β Ioo a b, HasDerivAt f (f' x) x
hfd : DifferentiableOn β f (Ioo a b)
g g' : β β β
hgc : ContinuousOn g (Icc a b)
hgg' : β x β Ioo a b, HasDerivAt g (g' x) x
hgd : DifferentiableOn β g (Ioo a b)
h : β β β := fun x => (g b - g a) * f x - (f b - f a) * g x
hI : h a = h b
h' : β β β := fun x => (g b - g a) * f' x - (f b - f a) * g' x
β’ β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by simpa using hf' _) (mem_univ _) hfgx
#align eq_of_fderiv_eq eq_of_fderiv_eq
end Convex
namespace Convex
variable {f f' : π β G} {s : Set π} {x y : π}
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `HasDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasDerivWithin_le {C : β}
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ :=
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs xs ys
#align convex.norm_image_sub_le_of_norm_has_deriv_within_le Convex.norm_image_sub_le_of_norm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `HasDerivWithinAt` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasDerivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C) :
LipschitzOnWith C f s :=
Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs
#align convex.lipschitz_on_with_of_nnnorm_has_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function within
this set is bounded by `C`, then the function is `C`-Lipschitz. Version with `derivWithin` -/
theorem norm_image_sub_le_of_norm_derivWithin_le {C : β} (hf : DifferentiableOn π f s)
(bound : β x β s, βderivWithin f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound xs
ys
#align convex.norm_image_sub_le_of_norm_deriv_within_le Convex.norm_image_sub_le_of_norm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `derivWithin` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_derivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : DifferentiableOn π f s) (bound : β x β s, βderivWithin f s xββ β€ C) :
LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `deriv`. -/
theorem norm_image_sub_le_of_norm_deriv_le {C : β} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_deriv_le Convex.norm_image_sub_le_of_norm_deriv_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `deriv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_le Convex.lipschitzOnWith_of_nnnorm_deriv_le
/-- The mean value theorem set in dimension 1: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `deriv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βderiv f xββ β€ C) : LipschitzWith C f :=
lipschitzOn_univ.1 <|
convex_univ.lipschitzOnWith_of_nnnorm_deriv_le (fun x _ => hf x) fun x _ => bound x
#align lipschitz_with_of_nnnorm_deriv_le lipschitzWith_of_nnnorm_deriv_le
/-- If `f : π β G`, `π = R` or `π = β`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : Differentiable π f) (hf' : β x, deriv f x = 0)
(x y : π) : f x = f y :=
is_const_of_fderiv_eq_zero hf (fun z => by ext; simp [β deriv_fderiv, hf']) _ _
#align is_const_of_deriv_eq_zero is_const_of_deriv_eq_zero
end Convex
end
/-! ### Functions `[a, b] β β`. -/
section Interval
-- Declare all variables here to make sure they come in a correct order
variable (f f' : β β β) {a b : β} (hab : a < b) (hfc : ContinuousOn f (Icc a b))
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hfd : DifferentiableOn β f (Ioo a b))
(g g' : β β β) (hgc : ContinuousOn g (Icc a b)) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hgd : DifferentiableOn β g (Ioo a b))
/-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
have hI : h a = h b := by simp only; ring
let h' x := (g b - g a) * f' x - (f b - f a) * g' x
| have hhh' : β x β Ioo a b, HasDerivAt h (h' x) x := fun x hx =>
((hff' x hx).const_mul (g b - g a)).sub ((hgg' x hx).const_mul (f b - f a)) | /-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
have hI : h a = h b := by simp only; ring
let h' x := (g b - g a) * f' x - (f b - f a) * g' x
| Mathlib.Analysis.Calculus.MeanValue.728_0.ReDurB0qNQAwk9I | /-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f f' : β β β
a b : β
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff' : β x β Ioo a b, HasDerivAt f (f' x) x
hfd : DifferentiableOn β f (Ioo a b)
g g' : β β β
hgc : ContinuousOn g (Icc a b)
hgg' : β x β Ioo a b, HasDerivAt g (g' x) x
hgd : DifferentiableOn β g (Ioo a b)
h : β β β := fun x => (g b - g a) * f x - (f b - f a) * g x
hI : h a = h b
h' : β β β := fun x => (g b - g a) * f' x - (f b - f a) * g' x
hhh' : β x β Ioo a b, HasDerivAt h (h' x) x
β’ β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by simpa using hf' _) (mem_univ _) hfgx
#align eq_of_fderiv_eq eq_of_fderiv_eq
end Convex
namespace Convex
variable {f f' : π β G} {s : Set π} {x y : π}
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `HasDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasDerivWithin_le {C : β}
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ :=
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs xs ys
#align convex.norm_image_sub_le_of_norm_has_deriv_within_le Convex.norm_image_sub_le_of_norm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `HasDerivWithinAt` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasDerivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C) :
LipschitzOnWith C f s :=
Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs
#align convex.lipschitz_on_with_of_nnnorm_has_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function within
this set is bounded by `C`, then the function is `C`-Lipschitz. Version with `derivWithin` -/
theorem norm_image_sub_le_of_norm_derivWithin_le {C : β} (hf : DifferentiableOn π f s)
(bound : β x β s, βderivWithin f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound xs
ys
#align convex.norm_image_sub_le_of_norm_deriv_within_le Convex.norm_image_sub_le_of_norm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `derivWithin` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_derivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : DifferentiableOn π f s) (bound : β x β s, βderivWithin f s xββ β€ C) :
LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `deriv`. -/
theorem norm_image_sub_le_of_norm_deriv_le {C : β} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_deriv_le Convex.norm_image_sub_le_of_norm_deriv_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `deriv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_le Convex.lipschitzOnWith_of_nnnorm_deriv_le
/-- The mean value theorem set in dimension 1: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `deriv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βderiv f xββ β€ C) : LipschitzWith C f :=
lipschitzOn_univ.1 <|
convex_univ.lipschitzOnWith_of_nnnorm_deriv_le (fun x _ => hf x) fun x _ => bound x
#align lipschitz_with_of_nnnorm_deriv_le lipschitzWith_of_nnnorm_deriv_le
/-- If `f : π β G`, `π = R` or `π = β`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : Differentiable π f) (hf' : β x, deriv f x = 0)
(x y : π) : f x = f y :=
is_const_of_fderiv_eq_zero hf (fun z => by ext; simp [β deriv_fderiv, hf']) _ _
#align is_const_of_deriv_eq_zero is_const_of_deriv_eq_zero
end Convex
end
/-! ### Functions `[a, b] β β`. -/
section Interval
-- Declare all variables here to make sure they come in a correct order
variable (f f' : β β β) {a b : β} (hab : a < b) (hfc : ContinuousOn f (Icc a b))
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hfd : DifferentiableOn β f (Ioo a b))
(g g' : β β β) (hgc : ContinuousOn g (Icc a b)) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hgd : DifferentiableOn β g (Ioo a b))
/-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
have hI : h a = h b := by simp only; ring
let h' x := (g b - g a) * f' x - (f b - f a) * g' x
have hhh' : β x β Ioo a b, HasDerivAt h (h' x) x := fun x hx =>
((hff' x hx).const_mul (g b - g a)).sub ((hgg' x hx).const_mul (f b - f a))
| have hhc : ContinuousOn h (Icc a b) :=
(continuousOn_const.mul hfc).sub (continuousOn_const.mul hgc) | /-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
have hI : h a = h b := by simp only; ring
let h' x := (g b - g a) * f' x - (f b - f a) * g' x
have hhh' : β x β Ioo a b, HasDerivAt h (h' x) x := fun x hx =>
((hff' x hx).const_mul (g b - g a)).sub ((hgg' x hx).const_mul (f b - f a))
| Mathlib.Analysis.Calculus.MeanValue.728_0.ReDurB0qNQAwk9I | /-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f f' : β β β
a b : β
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff' : β x β Ioo a b, HasDerivAt f (f' x) x
hfd : DifferentiableOn β f (Ioo a b)
g g' : β β β
hgc : ContinuousOn g (Icc a b)
hgg' : β x β Ioo a b, HasDerivAt g (g' x) x
hgd : DifferentiableOn β g (Ioo a b)
h : β β β := fun x => (g b - g a) * f x - (f b - f a) * g x
hI : h a = h b
h' : β β β := fun x => (g b - g a) * f' x - (f b - f a) * g' x
hhh' : β x β Ioo a b, HasDerivAt h (h' x) x
hhc : ContinuousOn h (Icc a b)
β’ β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by simpa using hf' _) (mem_univ _) hfgx
#align eq_of_fderiv_eq eq_of_fderiv_eq
end Convex
namespace Convex
variable {f f' : π β G} {s : Set π} {x y : π}
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `HasDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasDerivWithin_le {C : β}
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ :=
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs xs ys
#align convex.norm_image_sub_le_of_norm_has_deriv_within_le Convex.norm_image_sub_le_of_norm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `HasDerivWithinAt` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasDerivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C) :
LipschitzOnWith C f s :=
Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs
#align convex.lipschitz_on_with_of_nnnorm_has_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function within
this set is bounded by `C`, then the function is `C`-Lipschitz. Version with `derivWithin` -/
theorem norm_image_sub_le_of_norm_derivWithin_le {C : β} (hf : DifferentiableOn π f s)
(bound : β x β s, βderivWithin f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound xs
ys
#align convex.norm_image_sub_le_of_norm_deriv_within_le Convex.norm_image_sub_le_of_norm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `derivWithin` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_derivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : DifferentiableOn π f s) (bound : β x β s, βderivWithin f s xββ β€ C) :
LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `deriv`. -/
theorem norm_image_sub_le_of_norm_deriv_le {C : β} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_deriv_le Convex.norm_image_sub_le_of_norm_deriv_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `deriv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_le Convex.lipschitzOnWith_of_nnnorm_deriv_le
/-- The mean value theorem set in dimension 1: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `deriv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βderiv f xββ β€ C) : LipschitzWith C f :=
lipschitzOn_univ.1 <|
convex_univ.lipschitzOnWith_of_nnnorm_deriv_le (fun x _ => hf x) fun x _ => bound x
#align lipschitz_with_of_nnnorm_deriv_le lipschitzWith_of_nnnorm_deriv_le
/-- If `f : π β G`, `π = R` or `π = β`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : Differentiable π f) (hf' : β x, deriv f x = 0)
(x y : π) : f x = f y :=
is_const_of_fderiv_eq_zero hf (fun z => by ext; simp [β deriv_fderiv, hf']) _ _
#align is_const_of_deriv_eq_zero is_const_of_deriv_eq_zero
end Convex
end
/-! ### Functions `[a, b] β β`. -/
section Interval
-- Declare all variables here to make sure they come in a correct order
variable (f f' : β β β) {a b : β} (hab : a < b) (hfc : ContinuousOn f (Icc a b))
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hfd : DifferentiableOn β f (Ioo a b))
(g g' : β β β) (hgc : ContinuousOn g (Icc a b)) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hgd : DifferentiableOn β g (Ioo a b))
/-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
have hI : h a = h b := by simp only; ring
let h' x := (g b - g a) * f' x - (f b - f a) * g' x
have hhh' : β x β Ioo a b, HasDerivAt h (h' x) x := fun x hx =>
((hff' x hx).const_mul (g b - g a)).sub ((hgg' x hx).const_mul (f b - f a))
have hhc : ContinuousOn h (Icc a b) :=
(continuousOn_const.mul hfc).sub (continuousOn_const.mul hgc)
| rcases exists_hasDerivAt_eq_zero hab hhc hI hhh' with β¨c, cmem, hcβ© | /-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
have hI : h a = h b := by simp only; ring
let h' x := (g b - g a) * f' x - (f b - f a) * g' x
have hhh' : β x β Ioo a b, HasDerivAt h (h' x) x := fun x hx =>
((hff' x hx).const_mul (g b - g a)).sub ((hgg' x hx).const_mul (f b - f a))
have hhc : ContinuousOn h (Icc a b) :=
(continuousOn_const.mul hfc).sub (continuousOn_const.mul hgc)
| Mathlib.Analysis.Calculus.MeanValue.728_0.ReDurB0qNQAwk9I | /-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c | Mathlib_Analysis_Calculus_MeanValue |
case intro.intro
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f f' : β β β
a b : β
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff' : β x β Ioo a b, HasDerivAt f (f' x) x
hfd : DifferentiableOn β f (Ioo a b)
g g' : β β β
hgc : ContinuousOn g (Icc a b)
hgg' : β x β Ioo a b, HasDerivAt g (g' x) x
hgd : DifferentiableOn β g (Ioo a b)
h : β β β := fun x => (g b - g a) * f x - (f b - f a) * g x
hI : h a = h b
h' : β β β := fun x => (g b - g a) * f' x - (f b - f a) * g' x
hhh' : β x β Ioo a b, HasDerivAt h (h' x) x
hhc : ContinuousOn h (Icc a b)
c : β
cmem : c β Ioo a b
hc : h' c = 0
β’ β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by simpa using hf' _) (mem_univ _) hfgx
#align eq_of_fderiv_eq eq_of_fderiv_eq
end Convex
namespace Convex
variable {f f' : π β G} {s : Set π} {x y : π}
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `HasDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasDerivWithin_le {C : β}
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ :=
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs xs ys
#align convex.norm_image_sub_le_of_norm_has_deriv_within_le Convex.norm_image_sub_le_of_norm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `HasDerivWithinAt` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasDerivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C) :
LipschitzOnWith C f s :=
Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs
#align convex.lipschitz_on_with_of_nnnorm_has_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function within
this set is bounded by `C`, then the function is `C`-Lipschitz. Version with `derivWithin` -/
theorem norm_image_sub_le_of_norm_derivWithin_le {C : β} (hf : DifferentiableOn π f s)
(bound : β x β s, βderivWithin f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound xs
ys
#align convex.norm_image_sub_le_of_norm_deriv_within_le Convex.norm_image_sub_le_of_norm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `derivWithin` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_derivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : DifferentiableOn π f s) (bound : β x β s, βderivWithin f s xββ β€ C) :
LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `deriv`. -/
theorem norm_image_sub_le_of_norm_deriv_le {C : β} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_deriv_le Convex.norm_image_sub_le_of_norm_deriv_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `deriv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_le Convex.lipschitzOnWith_of_nnnorm_deriv_le
/-- The mean value theorem set in dimension 1: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `deriv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βderiv f xββ β€ C) : LipschitzWith C f :=
lipschitzOn_univ.1 <|
convex_univ.lipschitzOnWith_of_nnnorm_deriv_le (fun x _ => hf x) fun x _ => bound x
#align lipschitz_with_of_nnnorm_deriv_le lipschitzWith_of_nnnorm_deriv_le
/-- If `f : π β G`, `π = R` or `π = β`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : Differentiable π f) (hf' : β x, deriv f x = 0)
(x y : π) : f x = f y :=
is_const_of_fderiv_eq_zero hf (fun z => by ext; simp [β deriv_fderiv, hf']) _ _
#align is_const_of_deriv_eq_zero is_const_of_deriv_eq_zero
end Convex
end
/-! ### Functions `[a, b] β β`. -/
section Interval
-- Declare all variables here to make sure they come in a correct order
variable (f f' : β β β) {a b : β} (hab : a < b) (hfc : ContinuousOn f (Icc a b))
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hfd : DifferentiableOn β f (Ioo a b))
(g g' : β β β) (hgc : ContinuousOn g (Icc a b)) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hgd : DifferentiableOn β g (Ioo a b))
/-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
have hI : h a = h b := by simp only; ring
let h' x := (g b - g a) * f' x - (f b - f a) * g' x
have hhh' : β x β Ioo a b, HasDerivAt h (h' x) x := fun x hx =>
((hff' x hx).const_mul (g b - g a)).sub ((hgg' x hx).const_mul (f b - f a))
have hhc : ContinuousOn h (Icc a b) :=
(continuousOn_const.mul hfc).sub (continuousOn_const.mul hgc)
rcases exists_hasDerivAt_eq_zero hab hhc hI hhh' with β¨c, cmem, hcβ©
| exact β¨c, cmem, sub_eq_zero.1 hcβ© | /-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
have hI : h a = h b := by simp only; ring
let h' x := (g b - g a) * f' x - (f b - f a) * g' x
have hhh' : β x β Ioo a b, HasDerivAt h (h' x) x := fun x hx =>
((hff' x hx).const_mul (g b - g a)).sub ((hgg' x hx).const_mul (f b - f a))
have hhc : ContinuousOn h (Icc a b) :=
(continuousOn_const.mul hfc).sub (continuousOn_const.mul hgc)
rcases exists_hasDerivAt_eq_zero hab hhc hI hhh' with β¨c, cmem, hcβ©
| Mathlib.Analysis.Calculus.MeanValue.728_0.ReDurB0qNQAwk9I | /-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f f' : β β β
a b : β
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff'β : β x β Ioo a b, HasDerivAt f (f' x) x
hfd : DifferentiableOn β f (Ioo a b)
g g' : β β β
hgc : ContinuousOn g (Icc a b)
hgg'β : β x β Ioo a b, HasDerivAt g (g' x) x
hgd : DifferentiableOn β g (Ioo a b)
lfa lga lfb lgb : β
hff' : β x β Ioo a b, HasDerivAt f (f' x) x
hgg' : β x β Ioo a b, HasDerivAt g (g' x) x
hfa : Tendsto f (π[>] a) (π lfa)
hga : Tendsto g (π[>] a) (π lga)
hfb : Tendsto f (π[<] b) (π lfb)
hgb : Tendsto g (π[<] b) (π lgb)
β’ β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by simpa using hf' _) (mem_univ _) hfgx
#align eq_of_fderiv_eq eq_of_fderiv_eq
end Convex
namespace Convex
variable {f f' : π β G} {s : Set π} {x y : π}
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `HasDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasDerivWithin_le {C : β}
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ :=
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs xs ys
#align convex.norm_image_sub_le_of_norm_has_deriv_within_le Convex.norm_image_sub_le_of_norm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `HasDerivWithinAt` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasDerivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C) :
LipschitzOnWith C f s :=
Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs
#align convex.lipschitz_on_with_of_nnnorm_has_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function within
this set is bounded by `C`, then the function is `C`-Lipschitz. Version with `derivWithin` -/
theorem norm_image_sub_le_of_norm_derivWithin_le {C : β} (hf : DifferentiableOn π f s)
(bound : β x β s, βderivWithin f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound xs
ys
#align convex.norm_image_sub_le_of_norm_deriv_within_le Convex.norm_image_sub_le_of_norm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `derivWithin` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_derivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : DifferentiableOn π f s) (bound : β x β s, βderivWithin f s xββ β€ C) :
LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `deriv`. -/
theorem norm_image_sub_le_of_norm_deriv_le {C : β} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_deriv_le Convex.norm_image_sub_le_of_norm_deriv_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `deriv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_le Convex.lipschitzOnWith_of_nnnorm_deriv_le
/-- The mean value theorem set in dimension 1: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `deriv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βderiv f xββ β€ C) : LipschitzWith C f :=
lipschitzOn_univ.1 <|
convex_univ.lipschitzOnWith_of_nnnorm_deriv_le (fun x _ => hf x) fun x _ => bound x
#align lipschitz_with_of_nnnorm_deriv_le lipschitzWith_of_nnnorm_deriv_le
/-- If `f : π β G`, `π = R` or `π = β`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : Differentiable π f) (hf' : β x, deriv f x = 0)
(x y : π) : f x = f y :=
is_const_of_fderiv_eq_zero hf (fun z => by ext; simp [β deriv_fderiv, hf']) _ _
#align is_const_of_deriv_eq_zero is_const_of_deriv_eq_zero
end Convex
end
/-! ### Functions `[a, b] β β`. -/
section Interval
-- Declare all variables here to make sure they come in a correct order
variable (f f' : β β β) {a b : β} (hab : a < b) (hfc : ContinuousOn f (Icc a b))
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hfd : DifferentiableOn β f (Ioo a b))
(g g' : β β β) (hgc : ContinuousOn g (Icc a b)) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hgd : DifferentiableOn β g (Ioo a b))
/-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
have hI : h a = h b := by simp only; ring
let h' x := (g b - g a) * f' x - (f b - f a) * g' x
have hhh' : β x β Ioo a b, HasDerivAt h (h' x) x := fun x hx =>
((hff' x hx).const_mul (g b - g a)).sub ((hgg' x hx).const_mul (f b - f a))
have hhc : ContinuousOn h (Icc a b) :=
(continuousOn_const.mul hfc).sub (continuousOn_const.mul hgc)
rcases exists_hasDerivAt_eq_zero hab hhc hI hhh' with β¨c, cmem, hcβ©
exact β¨c, cmem, sub_eq_zero.1 hcβ©
#align exists_ratio_has_deriv_at_eq_ratio_slope exists_ratio_hasDerivAt_eq_ratio_slope
/-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c := by
| let h x := (lgb - lga) * f x - (lfb - lfa) * g x | /-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c := by
| Mathlib.Analysis.Calculus.MeanValue.742_0.ReDurB0qNQAwk9I | /-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f f' : β β β
a b : β
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff'β : β x β Ioo a b, HasDerivAt f (f' x) x
hfd : DifferentiableOn β f (Ioo a b)
g g' : β β β
hgc : ContinuousOn g (Icc a b)
hgg'β : β x β Ioo a b, HasDerivAt g (g' x) x
hgd : DifferentiableOn β g (Ioo a b)
lfa lga lfb lgb : β
hff' : β x β Ioo a b, HasDerivAt f (f' x) x
hgg' : β x β Ioo a b, HasDerivAt g (g' x) x
hfa : Tendsto f (π[>] a) (π lfa)
hga : Tendsto g (π[>] a) (π lga)
hfb : Tendsto f (π[<] b) (π lfb)
hgb : Tendsto g (π[<] b) (π lgb)
h : β β β := fun x => (lgb - lga) * f x - (lfb - lfa) * g x
β’ β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by simpa using hf' _) (mem_univ _) hfgx
#align eq_of_fderiv_eq eq_of_fderiv_eq
end Convex
namespace Convex
variable {f f' : π β G} {s : Set π} {x y : π}
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `HasDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasDerivWithin_le {C : β}
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ :=
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs xs ys
#align convex.norm_image_sub_le_of_norm_has_deriv_within_le Convex.norm_image_sub_le_of_norm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `HasDerivWithinAt` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasDerivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C) :
LipschitzOnWith C f s :=
Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs
#align convex.lipschitz_on_with_of_nnnorm_has_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function within
this set is bounded by `C`, then the function is `C`-Lipschitz. Version with `derivWithin` -/
theorem norm_image_sub_le_of_norm_derivWithin_le {C : β} (hf : DifferentiableOn π f s)
(bound : β x β s, βderivWithin f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound xs
ys
#align convex.norm_image_sub_le_of_norm_deriv_within_le Convex.norm_image_sub_le_of_norm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `derivWithin` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_derivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : DifferentiableOn π f s) (bound : β x β s, βderivWithin f s xββ β€ C) :
LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `deriv`. -/
theorem norm_image_sub_le_of_norm_deriv_le {C : β} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_deriv_le Convex.norm_image_sub_le_of_norm_deriv_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `deriv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_le Convex.lipschitzOnWith_of_nnnorm_deriv_le
/-- The mean value theorem set in dimension 1: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `deriv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βderiv f xββ β€ C) : LipschitzWith C f :=
lipschitzOn_univ.1 <|
convex_univ.lipschitzOnWith_of_nnnorm_deriv_le (fun x _ => hf x) fun x _ => bound x
#align lipschitz_with_of_nnnorm_deriv_le lipschitzWith_of_nnnorm_deriv_le
/-- If `f : π β G`, `π = R` or `π = β`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : Differentiable π f) (hf' : β x, deriv f x = 0)
(x y : π) : f x = f y :=
is_const_of_fderiv_eq_zero hf (fun z => by ext; simp [β deriv_fderiv, hf']) _ _
#align is_const_of_deriv_eq_zero is_const_of_deriv_eq_zero
end Convex
end
/-! ### Functions `[a, b] β β`. -/
section Interval
-- Declare all variables here to make sure they come in a correct order
variable (f f' : β β β) {a b : β} (hab : a < b) (hfc : ContinuousOn f (Icc a b))
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hfd : DifferentiableOn β f (Ioo a b))
(g g' : β β β) (hgc : ContinuousOn g (Icc a b)) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hgd : DifferentiableOn β g (Ioo a b))
/-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
have hI : h a = h b := by simp only; ring
let h' x := (g b - g a) * f' x - (f b - f a) * g' x
have hhh' : β x β Ioo a b, HasDerivAt h (h' x) x := fun x hx =>
((hff' x hx).const_mul (g b - g a)).sub ((hgg' x hx).const_mul (f b - f a))
have hhc : ContinuousOn h (Icc a b) :=
(continuousOn_const.mul hfc).sub (continuousOn_const.mul hgc)
rcases exists_hasDerivAt_eq_zero hab hhc hI hhh' with β¨c, cmem, hcβ©
exact β¨c, cmem, sub_eq_zero.1 hcβ©
#align exists_ratio_has_deriv_at_eq_ratio_slope exists_ratio_hasDerivAt_eq_ratio_slope
/-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c := by
let h x := (lgb - lga) * f x - (lfb - lfa) * g x
| have hha : Tendsto h (π[>] a) (π <| lgb * lfa - lfb * lga) := by
have : Tendsto h (π[>] a) (π <| (lgb - lga) * lfa - (lfb - lfa) * lga) :=
(tendsto_const_nhds.mul hfa).sub (tendsto_const_nhds.mul hga)
convert this using 2
ring | /-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c := by
let h x := (lgb - lga) * f x - (lfb - lfa) * g x
| Mathlib.Analysis.Calculus.MeanValue.742_0.ReDurB0qNQAwk9I | /-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f f' : β β β
a b : β
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff'β : β x β Ioo a b, HasDerivAt f (f' x) x
hfd : DifferentiableOn β f (Ioo a b)
g g' : β β β
hgc : ContinuousOn g (Icc a b)
hgg'β : β x β Ioo a b, HasDerivAt g (g' x) x
hgd : DifferentiableOn β g (Ioo a b)
lfa lga lfb lgb : β
hff' : β x β Ioo a b, HasDerivAt f (f' x) x
hgg' : β x β Ioo a b, HasDerivAt g (g' x) x
hfa : Tendsto f (π[>] a) (π lfa)
hga : Tendsto g (π[>] a) (π lga)
hfb : Tendsto f (π[<] b) (π lfb)
hgb : Tendsto g (π[<] b) (π lgb)
h : β β β := fun x => (lgb - lga) * f x - (lfb - lfa) * g x
β’ Tendsto h (π[>] a) (π (lgb * lfa - lfb * lga)) | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by simpa using hf' _) (mem_univ _) hfgx
#align eq_of_fderiv_eq eq_of_fderiv_eq
end Convex
namespace Convex
variable {f f' : π β G} {s : Set π} {x y : π}
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `HasDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasDerivWithin_le {C : β}
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ :=
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs xs ys
#align convex.norm_image_sub_le_of_norm_has_deriv_within_le Convex.norm_image_sub_le_of_norm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `HasDerivWithinAt` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasDerivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C) :
LipschitzOnWith C f s :=
Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs
#align convex.lipschitz_on_with_of_nnnorm_has_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function within
this set is bounded by `C`, then the function is `C`-Lipschitz. Version with `derivWithin` -/
theorem norm_image_sub_le_of_norm_derivWithin_le {C : β} (hf : DifferentiableOn π f s)
(bound : β x β s, βderivWithin f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound xs
ys
#align convex.norm_image_sub_le_of_norm_deriv_within_le Convex.norm_image_sub_le_of_norm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `derivWithin` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_derivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : DifferentiableOn π f s) (bound : β x β s, βderivWithin f s xββ β€ C) :
LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `deriv`. -/
theorem norm_image_sub_le_of_norm_deriv_le {C : β} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_deriv_le Convex.norm_image_sub_le_of_norm_deriv_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `deriv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_le Convex.lipschitzOnWith_of_nnnorm_deriv_le
/-- The mean value theorem set in dimension 1: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `deriv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βderiv f xββ β€ C) : LipschitzWith C f :=
lipschitzOn_univ.1 <|
convex_univ.lipschitzOnWith_of_nnnorm_deriv_le (fun x _ => hf x) fun x _ => bound x
#align lipschitz_with_of_nnnorm_deriv_le lipschitzWith_of_nnnorm_deriv_le
/-- If `f : π β G`, `π = R` or `π = β`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : Differentiable π f) (hf' : β x, deriv f x = 0)
(x y : π) : f x = f y :=
is_const_of_fderiv_eq_zero hf (fun z => by ext; simp [β deriv_fderiv, hf']) _ _
#align is_const_of_deriv_eq_zero is_const_of_deriv_eq_zero
end Convex
end
/-! ### Functions `[a, b] β β`. -/
section Interval
-- Declare all variables here to make sure they come in a correct order
variable (f f' : β β β) {a b : β} (hab : a < b) (hfc : ContinuousOn f (Icc a b))
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hfd : DifferentiableOn β f (Ioo a b))
(g g' : β β β) (hgc : ContinuousOn g (Icc a b)) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hgd : DifferentiableOn β g (Ioo a b))
/-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
have hI : h a = h b := by simp only; ring
let h' x := (g b - g a) * f' x - (f b - f a) * g' x
have hhh' : β x β Ioo a b, HasDerivAt h (h' x) x := fun x hx =>
((hff' x hx).const_mul (g b - g a)).sub ((hgg' x hx).const_mul (f b - f a))
have hhc : ContinuousOn h (Icc a b) :=
(continuousOn_const.mul hfc).sub (continuousOn_const.mul hgc)
rcases exists_hasDerivAt_eq_zero hab hhc hI hhh' with β¨c, cmem, hcβ©
exact β¨c, cmem, sub_eq_zero.1 hcβ©
#align exists_ratio_has_deriv_at_eq_ratio_slope exists_ratio_hasDerivAt_eq_ratio_slope
/-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c := by
let h x := (lgb - lga) * f x - (lfb - lfa) * g x
have hha : Tendsto h (π[>] a) (π <| lgb * lfa - lfb * lga) := by
| have : Tendsto h (π[>] a) (π <| (lgb - lga) * lfa - (lfb - lfa) * lga) :=
(tendsto_const_nhds.mul hfa).sub (tendsto_const_nhds.mul hga) | /-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c := by
let h x := (lgb - lga) * f x - (lfb - lfa) * g x
have hha : Tendsto h (π[>] a) (π <| lgb * lfa - lfb * lga) := by
| Mathlib.Analysis.Calculus.MeanValue.742_0.ReDurB0qNQAwk9I | /-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f f' : β β β
a b : β
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff'β : β x β Ioo a b, HasDerivAt f (f' x) x
hfd : DifferentiableOn β f (Ioo a b)
g g' : β β β
hgc : ContinuousOn g (Icc a b)
hgg'β : β x β Ioo a b, HasDerivAt g (g' x) x
hgd : DifferentiableOn β g (Ioo a b)
lfa lga lfb lgb : β
hff' : β x β Ioo a b, HasDerivAt f (f' x) x
hgg' : β x β Ioo a b, HasDerivAt g (g' x) x
hfa : Tendsto f (π[>] a) (π lfa)
hga : Tendsto g (π[>] a) (π lga)
hfb : Tendsto f (π[<] b) (π lfb)
hgb : Tendsto g (π[<] b) (π lgb)
h : β β β := fun x => (lgb - lga) * f x - (lfb - lfa) * g x
this : Tendsto h (π[>] a) (π ((lgb - lga) * lfa - (lfb - lfa) * lga))
β’ Tendsto h (π[>] a) (π (lgb * lfa - lfb * lga)) | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by simpa using hf' _) (mem_univ _) hfgx
#align eq_of_fderiv_eq eq_of_fderiv_eq
end Convex
namespace Convex
variable {f f' : π β G} {s : Set π} {x y : π}
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `HasDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasDerivWithin_le {C : β}
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ :=
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs xs ys
#align convex.norm_image_sub_le_of_norm_has_deriv_within_le Convex.norm_image_sub_le_of_norm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `HasDerivWithinAt` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasDerivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C) :
LipschitzOnWith C f s :=
Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs
#align convex.lipschitz_on_with_of_nnnorm_has_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function within
this set is bounded by `C`, then the function is `C`-Lipschitz. Version with `derivWithin` -/
theorem norm_image_sub_le_of_norm_derivWithin_le {C : β} (hf : DifferentiableOn π f s)
(bound : β x β s, βderivWithin f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound xs
ys
#align convex.norm_image_sub_le_of_norm_deriv_within_le Convex.norm_image_sub_le_of_norm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `derivWithin` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_derivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : DifferentiableOn π f s) (bound : β x β s, βderivWithin f s xββ β€ C) :
LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `deriv`. -/
theorem norm_image_sub_le_of_norm_deriv_le {C : β} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_deriv_le Convex.norm_image_sub_le_of_norm_deriv_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `deriv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_le Convex.lipschitzOnWith_of_nnnorm_deriv_le
/-- The mean value theorem set in dimension 1: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `deriv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βderiv f xββ β€ C) : LipschitzWith C f :=
lipschitzOn_univ.1 <|
convex_univ.lipschitzOnWith_of_nnnorm_deriv_le (fun x _ => hf x) fun x _ => bound x
#align lipschitz_with_of_nnnorm_deriv_le lipschitzWith_of_nnnorm_deriv_le
/-- If `f : π β G`, `π = R` or `π = β`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : Differentiable π f) (hf' : β x, deriv f x = 0)
(x y : π) : f x = f y :=
is_const_of_fderiv_eq_zero hf (fun z => by ext; simp [β deriv_fderiv, hf']) _ _
#align is_const_of_deriv_eq_zero is_const_of_deriv_eq_zero
end Convex
end
/-! ### Functions `[a, b] β β`. -/
section Interval
-- Declare all variables here to make sure they come in a correct order
variable (f f' : β β β) {a b : β} (hab : a < b) (hfc : ContinuousOn f (Icc a b))
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hfd : DifferentiableOn β f (Ioo a b))
(g g' : β β β) (hgc : ContinuousOn g (Icc a b)) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hgd : DifferentiableOn β g (Ioo a b))
/-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
have hI : h a = h b := by simp only; ring
let h' x := (g b - g a) * f' x - (f b - f a) * g' x
have hhh' : β x β Ioo a b, HasDerivAt h (h' x) x := fun x hx =>
((hff' x hx).const_mul (g b - g a)).sub ((hgg' x hx).const_mul (f b - f a))
have hhc : ContinuousOn h (Icc a b) :=
(continuousOn_const.mul hfc).sub (continuousOn_const.mul hgc)
rcases exists_hasDerivAt_eq_zero hab hhc hI hhh' with β¨c, cmem, hcβ©
exact β¨c, cmem, sub_eq_zero.1 hcβ©
#align exists_ratio_has_deriv_at_eq_ratio_slope exists_ratio_hasDerivAt_eq_ratio_slope
/-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c := by
let h x := (lgb - lga) * f x - (lfb - lfa) * g x
have hha : Tendsto h (π[>] a) (π <| lgb * lfa - lfb * lga) := by
have : Tendsto h (π[>] a) (π <| (lgb - lga) * lfa - (lfb - lfa) * lga) :=
(tendsto_const_nhds.mul hfa).sub (tendsto_const_nhds.mul hga)
| convert this using 2 | /-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c := by
let h x := (lgb - lga) * f x - (lfb - lfa) * g x
have hha : Tendsto h (π[>] a) (π <| lgb * lfa - lfb * lga) := by
have : Tendsto h (π[>] a) (π <| (lgb - lga) * lfa - (lfb - lfa) * lga) :=
(tendsto_const_nhds.mul hfa).sub (tendsto_const_nhds.mul hga)
| Mathlib.Analysis.Calculus.MeanValue.742_0.ReDurB0qNQAwk9I | /-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c | Mathlib_Analysis_Calculus_MeanValue |
case h.e'_5.h.e'_3
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f f' : β β β
a b : β
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff'β : β x β Ioo a b, HasDerivAt f (f' x) x
hfd : DifferentiableOn β f (Ioo a b)
g g' : β β β
hgc : ContinuousOn g (Icc a b)
hgg'β : β x β Ioo a b, HasDerivAt g (g' x) x
hgd : DifferentiableOn β g (Ioo a b)
lfa lga lfb lgb : β
hff' : β x β Ioo a b, HasDerivAt f (f' x) x
hgg' : β x β Ioo a b, HasDerivAt g (g' x) x
hfa : Tendsto f (π[>] a) (π lfa)
hga : Tendsto g (π[>] a) (π lga)
hfb : Tendsto f (π[<] b) (π lfb)
hgb : Tendsto g (π[<] b) (π lgb)
h : β β β := fun x => (lgb - lga) * f x - (lfb - lfa) * g x
this : Tendsto h (π[>] a) (π ((lgb - lga) * lfa - (lfb - lfa) * lga))
β’ lgb * lfa - lfb * lga = (lgb - lga) * lfa - (lfb - lfa) * lga | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by simpa using hf' _) (mem_univ _) hfgx
#align eq_of_fderiv_eq eq_of_fderiv_eq
end Convex
namespace Convex
variable {f f' : π β G} {s : Set π} {x y : π}
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `HasDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasDerivWithin_le {C : β}
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ :=
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs xs ys
#align convex.norm_image_sub_le_of_norm_has_deriv_within_le Convex.norm_image_sub_le_of_norm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `HasDerivWithinAt` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasDerivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C) :
LipschitzOnWith C f s :=
Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs
#align convex.lipschitz_on_with_of_nnnorm_has_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function within
this set is bounded by `C`, then the function is `C`-Lipschitz. Version with `derivWithin` -/
theorem norm_image_sub_le_of_norm_derivWithin_le {C : β} (hf : DifferentiableOn π f s)
(bound : β x β s, βderivWithin f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound xs
ys
#align convex.norm_image_sub_le_of_norm_deriv_within_le Convex.norm_image_sub_le_of_norm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `derivWithin` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_derivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : DifferentiableOn π f s) (bound : β x β s, βderivWithin f s xββ β€ C) :
LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `deriv`. -/
theorem norm_image_sub_le_of_norm_deriv_le {C : β} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_deriv_le Convex.norm_image_sub_le_of_norm_deriv_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `deriv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_le Convex.lipschitzOnWith_of_nnnorm_deriv_le
/-- The mean value theorem set in dimension 1: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `deriv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βderiv f xββ β€ C) : LipschitzWith C f :=
lipschitzOn_univ.1 <|
convex_univ.lipschitzOnWith_of_nnnorm_deriv_le (fun x _ => hf x) fun x _ => bound x
#align lipschitz_with_of_nnnorm_deriv_le lipschitzWith_of_nnnorm_deriv_le
/-- If `f : π β G`, `π = R` or `π = β`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : Differentiable π f) (hf' : β x, deriv f x = 0)
(x y : π) : f x = f y :=
is_const_of_fderiv_eq_zero hf (fun z => by ext; simp [β deriv_fderiv, hf']) _ _
#align is_const_of_deriv_eq_zero is_const_of_deriv_eq_zero
end Convex
end
/-! ### Functions `[a, b] β β`. -/
section Interval
-- Declare all variables here to make sure they come in a correct order
variable (f f' : β β β) {a b : β} (hab : a < b) (hfc : ContinuousOn f (Icc a b))
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hfd : DifferentiableOn β f (Ioo a b))
(g g' : β β β) (hgc : ContinuousOn g (Icc a b)) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hgd : DifferentiableOn β g (Ioo a b))
/-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
have hI : h a = h b := by simp only; ring
let h' x := (g b - g a) * f' x - (f b - f a) * g' x
have hhh' : β x β Ioo a b, HasDerivAt h (h' x) x := fun x hx =>
((hff' x hx).const_mul (g b - g a)).sub ((hgg' x hx).const_mul (f b - f a))
have hhc : ContinuousOn h (Icc a b) :=
(continuousOn_const.mul hfc).sub (continuousOn_const.mul hgc)
rcases exists_hasDerivAt_eq_zero hab hhc hI hhh' with β¨c, cmem, hcβ©
exact β¨c, cmem, sub_eq_zero.1 hcβ©
#align exists_ratio_has_deriv_at_eq_ratio_slope exists_ratio_hasDerivAt_eq_ratio_slope
/-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c := by
let h x := (lgb - lga) * f x - (lfb - lfa) * g x
have hha : Tendsto h (π[>] a) (π <| lgb * lfa - lfb * lga) := by
have : Tendsto h (π[>] a) (π <| (lgb - lga) * lfa - (lfb - lfa) * lga) :=
(tendsto_const_nhds.mul hfa).sub (tendsto_const_nhds.mul hga)
convert this using 2
| ring | /-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c := by
let h x := (lgb - lga) * f x - (lfb - lfa) * g x
have hha : Tendsto h (π[>] a) (π <| lgb * lfa - lfb * lga) := by
have : Tendsto h (π[>] a) (π <| (lgb - lga) * lfa - (lfb - lfa) * lga) :=
(tendsto_const_nhds.mul hfa).sub (tendsto_const_nhds.mul hga)
convert this using 2
| Mathlib.Analysis.Calculus.MeanValue.742_0.ReDurB0qNQAwk9I | /-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f f' : β β β
a b : β
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff'β : β x β Ioo a b, HasDerivAt f (f' x) x
hfd : DifferentiableOn β f (Ioo a b)
g g' : β β β
hgc : ContinuousOn g (Icc a b)
hgg'β : β x β Ioo a b, HasDerivAt g (g' x) x
hgd : DifferentiableOn β g (Ioo a b)
lfa lga lfb lgb : β
hff' : β x β Ioo a b, HasDerivAt f (f' x) x
hgg' : β x β Ioo a b, HasDerivAt g (g' x) x
hfa : Tendsto f (π[>] a) (π lfa)
hga : Tendsto g (π[>] a) (π lga)
hfb : Tendsto f (π[<] b) (π lfb)
hgb : Tendsto g (π[<] b) (π lgb)
h : β β β := fun x => (lgb - lga) * f x - (lfb - lfa) * g x
hha : Tendsto h (π[>] a) (π (lgb * lfa - lfb * lga))
β’ β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by simpa using hf' _) (mem_univ _) hfgx
#align eq_of_fderiv_eq eq_of_fderiv_eq
end Convex
namespace Convex
variable {f f' : π β G} {s : Set π} {x y : π}
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `HasDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasDerivWithin_le {C : β}
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ :=
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs xs ys
#align convex.norm_image_sub_le_of_norm_has_deriv_within_le Convex.norm_image_sub_le_of_norm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `HasDerivWithinAt` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasDerivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C) :
LipschitzOnWith C f s :=
Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs
#align convex.lipschitz_on_with_of_nnnorm_has_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function within
this set is bounded by `C`, then the function is `C`-Lipschitz. Version with `derivWithin` -/
theorem norm_image_sub_le_of_norm_derivWithin_le {C : β} (hf : DifferentiableOn π f s)
(bound : β x β s, βderivWithin f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound xs
ys
#align convex.norm_image_sub_le_of_norm_deriv_within_le Convex.norm_image_sub_le_of_norm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `derivWithin` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_derivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : DifferentiableOn π f s) (bound : β x β s, βderivWithin f s xββ β€ C) :
LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `deriv`. -/
theorem norm_image_sub_le_of_norm_deriv_le {C : β} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_deriv_le Convex.norm_image_sub_le_of_norm_deriv_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `deriv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_le Convex.lipschitzOnWith_of_nnnorm_deriv_le
/-- The mean value theorem set in dimension 1: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `deriv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βderiv f xββ β€ C) : LipschitzWith C f :=
lipschitzOn_univ.1 <|
convex_univ.lipschitzOnWith_of_nnnorm_deriv_le (fun x _ => hf x) fun x _ => bound x
#align lipschitz_with_of_nnnorm_deriv_le lipschitzWith_of_nnnorm_deriv_le
/-- If `f : π β G`, `π = R` or `π = β`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : Differentiable π f) (hf' : β x, deriv f x = 0)
(x y : π) : f x = f y :=
is_const_of_fderiv_eq_zero hf (fun z => by ext; simp [β deriv_fderiv, hf']) _ _
#align is_const_of_deriv_eq_zero is_const_of_deriv_eq_zero
end Convex
end
/-! ### Functions `[a, b] β β`. -/
section Interval
-- Declare all variables here to make sure they come in a correct order
variable (f f' : β β β) {a b : β} (hab : a < b) (hfc : ContinuousOn f (Icc a b))
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hfd : DifferentiableOn β f (Ioo a b))
(g g' : β β β) (hgc : ContinuousOn g (Icc a b)) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hgd : DifferentiableOn β g (Ioo a b))
/-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
have hI : h a = h b := by simp only; ring
let h' x := (g b - g a) * f' x - (f b - f a) * g' x
have hhh' : β x β Ioo a b, HasDerivAt h (h' x) x := fun x hx =>
((hff' x hx).const_mul (g b - g a)).sub ((hgg' x hx).const_mul (f b - f a))
have hhc : ContinuousOn h (Icc a b) :=
(continuousOn_const.mul hfc).sub (continuousOn_const.mul hgc)
rcases exists_hasDerivAt_eq_zero hab hhc hI hhh' with β¨c, cmem, hcβ©
exact β¨c, cmem, sub_eq_zero.1 hcβ©
#align exists_ratio_has_deriv_at_eq_ratio_slope exists_ratio_hasDerivAt_eq_ratio_slope
/-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c := by
let h x := (lgb - lga) * f x - (lfb - lfa) * g x
have hha : Tendsto h (π[>] a) (π <| lgb * lfa - lfb * lga) := by
have : Tendsto h (π[>] a) (π <| (lgb - lga) * lfa - (lfb - lfa) * lga) :=
(tendsto_const_nhds.mul hfa).sub (tendsto_const_nhds.mul hga)
convert this using 2
ring
| have hhb : Tendsto h (π[<] b) (π <| lgb * lfa - lfb * lga) := by
have : Tendsto h (π[<] b) (π <| (lgb - lga) * lfb - (lfb - lfa) * lgb) :=
(tendsto_const_nhds.mul hfb).sub (tendsto_const_nhds.mul hgb)
convert this using 2
ring | /-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c := by
let h x := (lgb - lga) * f x - (lfb - lfa) * g x
have hha : Tendsto h (π[>] a) (π <| lgb * lfa - lfb * lga) := by
have : Tendsto h (π[>] a) (π <| (lgb - lga) * lfa - (lfb - lfa) * lga) :=
(tendsto_const_nhds.mul hfa).sub (tendsto_const_nhds.mul hga)
convert this using 2
ring
| Mathlib.Analysis.Calculus.MeanValue.742_0.ReDurB0qNQAwk9I | /-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f f' : β β β
a b : β
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff'β : β x β Ioo a b, HasDerivAt f (f' x) x
hfd : DifferentiableOn β f (Ioo a b)
g g' : β β β
hgc : ContinuousOn g (Icc a b)
hgg'β : β x β Ioo a b, HasDerivAt g (g' x) x
hgd : DifferentiableOn β g (Ioo a b)
lfa lga lfb lgb : β
hff' : β x β Ioo a b, HasDerivAt f (f' x) x
hgg' : β x β Ioo a b, HasDerivAt g (g' x) x
hfa : Tendsto f (π[>] a) (π lfa)
hga : Tendsto g (π[>] a) (π lga)
hfb : Tendsto f (π[<] b) (π lfb)
hgb : Tendsto g (π[<] b) (π lgb)
h : β β β := fun x => (lgb - lga) * f x - (lfb - lfa) * g x
hha : Tendsto h (π[>] a) (π (lgb * lfa - lfb * lga))
β’ Tendsto h (π[<] b) (π (lgb * lfa - lfb * lga)) | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by simpa using hf' _) (mem_univ _) hfgx
#align eq_of_fderiv_eq eq_of_fderiv_eq
end Convex
namespace Convex
variable {f f' : π β G} {s : Set π} {x y : π}
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `HasDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasDerivWithin_le {C : β}
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ :=
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs xs ys
#align convex.norm_image_sub_le_of_norm_has_deriv_within_le Convex.norm_image_sub_le_of_norm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `HasDerivWithinAt` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasDerivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C) :
LipschitzOnWith C f s :=
Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs
#align convex.lipschitz_on_with_of_nnnorm_has_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function within
this set is bounded by `C`, then the function is `C`-Lipschitz. Version with `derivWithin` -/
theorem norm_image_sub_le_of_norm_derivWithin_le {C : β} (hf : DifferentiableOn π f s)
(bound : β x β s, βderivWithin f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound xs
ys
#align convex.norm_image_sub_le_of_norm_deriv_within_le Convex.norm_image_sub_le_of_norm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `derivWithin` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_derivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : DifferentiableOn π f s) (bound : β x β s, βderivWithin f s xββ β€ C) :
LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `deriv`. -/
theorem norm_image_sub_le_of_norm_deriv_le {C : β} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_deriv_le Convex.norm_image_sub_le_of_norm_deriv_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `deriv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_le Convex.lipschitzOnWith_of_nnnorm_deriv_le
/-- The mean value theorem set in dimension 1: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `deriv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βderiv f xββ β€ C) : LipschitzWith C f :=
lipschitzOn_univ.1 <|
convex_univ.lipschitzOnWith_of_nnnorm_deriv_le (fun x _ => hf x) fun x _ => bound x
#align lipschitz_with_of_nnnorm_deriv_le lipschitzWith_of_nnnorm_deriv_le
/-- If `f : π β G`, `π = R` or `π = β`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : Differentiable π f) (hf' : β x, deriv f x = 0)
(x y : π) : f x = f y :=
is_const_of_fderiv_eq_zero hf (fun z => by ext; simp [β deriv_fderiv, hf']) _ _
#align is_const_of_deriv_eq_zero is_const_of_deriv_eq_zero
end Convex
end
/-! ### Functions `[a, b] β β`. -/
section Interval
-- Declare all variables here to make sure they come in a correct order
variable (f f' : β β β) {a b : β} (hab : a < b) (hfc : ContinuousOn f (Icc a b))
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hfd : DifferentiableOn β f (Ioo a b))
(g g' : β β β) (hgc : ContinuousOn g (Icc a b)) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hgd : DifferentiableOn β g (Ioo a b))
/-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
have hI : h a = h b := by simp only; ring
let h' x := (g b - g a) * f' x - (f b - f a) * g' x
have hhh' : β x β Ioo a b, HasDerivAt h (h' x) x := fun x hx =>
((hff' x hx).const_mul (g b - g a)).sub ((hgg' x hx).const_mul (f b - f a))
have hhc : ContinuousOn h (Icc a b) :=
(continuousOn_const.mul hfc).sub (continuousOn_const.mul hgc)
rcases exists_hasDerivAt_eq_zero hab hhc hI hhh' with β¨c, cmem, hcβ©
exact β¨c, cmem, sub_eq_zero.1 hcβ©
#align exists_ratio_has_deriv_at_eq_ratio_slope exists_ratio_hasDerivAt_eq_ratio_slope
/-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c := by
let h x := (lgb - lga) * f x - (lfb - lfa) * g x
have hha : Tendsto h (π[>] a) (π <| lgb * lfa - lfb * lga) := by
have : Tendsto h (π[>] a) (π <| (lgb - lga) * lfa - (lfb - lfa) * lga) :=
(tendsto_const_nhds.mul hfa).sub (tendsto_const_nhds.mul hga)
convert this using 2
ring
have hhb : Tendsto h (π[<] b) (π <| lgb * lfa - lfb * lga) := by
| have : Tendsto h (π[<] b) (π <| (lgb - lga) * lfb - (lfb - lfa) * lgb) :=
(tendsto_const_nhds.mul hfb).sub (tendsto_const_nhds.mul hgb) | /-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c := by
let h x := (lgb - lga) * f x - (lfb - lfa) * g x
have hha : Tendsto h (π[>] a) (π <| lgb * lfa - lfb * lga) := by
have : Tendsto h (π[>] a) (π <| (lgb - lga) * lfa - (lfb - lfa) * lga) :=
(tendsto_const_nhds.mul hfa).sub (tendsto_const_nhds.mul hga)
convert this using 2
ring
have hhb : Tendsto h (π[<] b) (π <| lgb * lfa - lfb * lga) := by
| Mathlib.Analysis.Calculus.MeanValue.742_0.ReDurB0qNQAwk9I | /-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f f' : β β β
a b : β
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff'β : β x β Ioo a b, HasDerivAt f (f' x) x
hfd : DifferentiableOn β f (Ioo a b)
g g' : β β β
hgc : ContinuousOn g (Icc a b)
hgg'β : β x β Ioo a b, HasDerivAt g (g' x) x
hgd : DifferentiableOn β g (Ioo a b)
lfa lga lfb lgb : β
hff' : β x β Ioo a b, HasDerivAt f (f' x) x
hgg' : β x β Ioo a b, HasDerivAt g (g' x) x
hfa : Tendsto f (π[>] a) (π lfa)
hga : Tendsto g (π[>] a) (π lga)
hfb : Tendsto f (π[<] b) (π lfb)
hgb : Tendsto g (π[<] b) (π lgb)
h : β β β := fun x => (lgb - lga) * f x - (lfb - lfa) * g x
hha : Tendsto h (π[>] a) (π (lgb * lfa - lfb * lga))
this : Tendsto h (π[<] b) (π ((lgb - lga) * lfb - (lfb - lfa) * lgb))
β’ Tendsto h (π[<] b) (π (lgb * lfa - lfb * lga)) | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by simpa using hf' _) (mem_univ _) hfgx
#align eq_of_fderiv_eq eq_of_fderiv_eq
end Convex
namespace Convex
variable {f f' : π β G} {s : Set π} {x y : π}
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `HasDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasDerivWithin_le {C : β}
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ :=
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs xs ys
#align convex.norm_image_sub_le_of_norm_has_deriv_within_le Convex.norm_image_sub_le_of_norm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `HasDerivWithinAt` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasDerivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C) :
LipschitzOnWith C f s :=
Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs
#align convex.lipschitz_on_with_of_nnnorm_has_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function within
this set is bounded by `C`, then the function is `C`-Lipschitz. Version with `derivWithin` -/
theorem norm_image_sub_le_of_norm_derivWithin_le {C : β} (hf : DifferentiableOn π f s)
(bound : β x β s, βderivWithin f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound xs
ys
#align convex.norm_image_sub_le_of_norm_deriv_within_le Convex.norm_image_sub_le_of_norm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `derivWithin` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_derivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : DifferentiableOn π f s) (bound : β x β s, βderivWithin f s xββ β€ C) :
LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `deriv`. -/
theorem norm_image_sub_le_of_norm_deriv_le {C : β} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_deriv_le Convex.norm_image_sub_le_of_norm_deriv_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `deriv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_le Convex.lipschitzOnWith_of_nnnorm_deriv_le
/-- The mean value theorem set in dimension 1: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `deriv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βderiv f xββ β€ C) : LipschitzWith C f :=
lipschitzOn_univ.1 <|
convex_univ.lipschitzOnWith_of_nnnorm_deriv_le (fun x _ => hf x) fun x _ => bound x
#align lipschitz_with_of_nnnorm_deriv_le lipschitzWith_of_nnnorm_deriv_le
/-- If `f : π β G`, `π = R` or `π = β`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : Differentiable π f) (hf' : β x, deriv f x = 0)
(x y : π) : f x = f y :=
is_const_of_fderiv_eq_zero hf (fun z => by ext; simp [β deriv_fderiv, hf']) _ _
#align is_const_of_deriv_eq_zero is_const_of_deriv_eq_zero
end Convex
end
/-! ### Functions `[a, b] β β`. -/
section Interval
-- Declare all variables here to make sure they come in a correct order
variable (f f' : β β β) {a b : β} (hab : a < b) (hfc : ContinuousOn f (Icc a b))
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hfd : DifferentiableOn β f (Ioo a b))
(g g' : β β β) (hgc : ContinuousOn g (Icc a b)) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hgd : DifferentiableOn β g (Ioo a b))
/-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
have hI : h a = h b := by simp only; ring
let h' x := (g b - g a) * f' x - (f b - f a) * g' x
have hhh' : β x β Ioo a b, HasDerivAt h (h' x) x := fun x hx =>
((hff' x hx).const_mul (g b - g a)).sub ((hgg' x hx).const_mul (f b - f a))
have hhc : ContinuousOn h (Icc a b) :=
(continuousOn_const.mul hfc).sub (continuousOn_const.mul hgc)
rcases exists_hasDerivAt_eq_zero hab hhc hI hhh' with β¨c, cmem, hcβ©
exact β¨c, cmem, sub_eq_zero.1 hcβ©
#align exists_ratio_has_deriv_at_eq_ratio_slope exists_ratio_hasDerivAt_eq_ratio_slope
/-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c := by
let h x := (lgb - lga) * f x - (lfb - lfa) * g x
have hha : Tendsto h (π[>] a) (π <| lgb * lfa - lfb * lga) := by
have : Tendsto h (π[>] a) (π <| (lgb - lga) * lfa - (lfb - lfa) * lga) :=
(tendsto_const_nhds.mul hfa).sub (tendsto_const_nhds.mul hga)
convert this using 2
ring
have hhb : Tendsto h (π[<] b) (π <| lgb * lfa - lfb * lga) := by
have : Tendsto h (π[<] b) (π <| (lgb - lga) * lfb - (lfb - lfa) * lgb) :=
(tendsto_const_nhds.mul hfb).sub (tendsto_const_nhds.mul hgb)
| convert this using 2 | /-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c := by
let h x := (lgb - lga) * f x - (lfb - lfa) * g x
have hha : Tendsto h (π[>] a) (π <| lgb * lfa - lfb * lga) := by
have : Tendsto h (π[>] a) (π <| (lgb - lga) * lfa - (lfb - lfa) * lga) :=
(tendsto_const_nhds.mul hfa).sub (tendsto_const_nhds.mul hga)
convert this using 2
ring
have hhb : Tendsto h (π[<] b) (π <| lgb * lfa - lfb * lga) := by
have : Tendsto h (π[<] b) (π <| (lgb - lga) * lfb - (lfb - lfa) * lgb) :=
(tendsto_const_nhds.mul hfb).sub (tendsto_const_nhds.mul hgb)
| Mathlib.Analysis.Calculus.MeanValue.742_0.ReDurB0qNQAwk9I | /-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c | Mathlib_Analysis_Calculus_MeanValue |
case h.e'_5.h.e'_3
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f f' : β β β
a b : β
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff'β : β x β Ioo a b, HasDerivAt f (f' x) x
hfd : DifferentiableOn β f (Ioo a b)
g g' : β β β
hgc : ContinuousOn g (Icc a b)
hgg'β : β x β Ioo a b, HasDerivAt g (g' x) x
hgd : DifferentiableOn β g (Ioo a b)
lfa lga lfb lgb : β
hff' : β x β Ioo a b, HasDerivAt f (f' x) x
hgg' : β x β Ioo a b, HasDerivAt g (g' x) x
hfa : Tendsto f (π[>] a) (π lfa)
hga : Tendsto g (π[>] a) (π lga)
hfb : Tendsto f (π[<] b) (π lfb)
hgb : Tendsto g (π[<] b) (π lgb)
h : β β β := fun x => (lgb - lga) * f x - (lfb - lfa) * g x
hha : Tendsto h (π[>] a) (π (lgb * lfa - lfb * lga))
this : Tendsto h (π[<] b) (π ((lgb - lga) * lfb - (lfb - lfa) * lgb))
β’ lgb * lfa - lfb * lga = (lgb - lga) * lfb - (lfb - lfa) * lgb | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by simpa using hf' _) (mem_univ _) hfgx
#align eq_of_fderiv_eq eq_of_fderiv_eq
end Convex
namespace Convex
variable {f f' : π β G} {s : Set π} {x y : π}
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `HasDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasDerivWithin_le {C : β}
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ :=
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs xs ys
#align convex.norm_image_sub_le_of_norm_has_deriv_within_le Convex.norm_image_sub_le_of_norm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `HasDerivWithinAt` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasDerivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C) :
LipschitzOnWith C f s :=
Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs
#align convex.lipschitz_on_with_of_nnnorm_has_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function within
this set is bounded by `C`, then the function is `C`-Lipschitz. Version with `derivWithin` -/
theorem norm_image_sub_le_of_norm_derivWithin_le {C : β} (hf : DifferentiableOn π f s)
(bound : β x β s, βderivWithin f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound xs
ys
#align convex.norm_image_sub_le_of_norm_deriv_within_le Convex.norm_image_sub_le_of_norm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `derivWithin` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_derivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : DifferentiableOn π f s) (bound : β x β s, βderivWithin f s xββ β€ C) :
LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `deriv`. -/
theorem norm_image_sub_le_of_norm_deriv_le {C : β} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_deriv_le Convex.norm_image_sub_le_of_norm_deriv_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `deriv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_le Convex.lipschitzOnWith_of_nnnorm_deriv_le
/-- The mean value theorem set in dimension 1: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `deriv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βderiv f xββ β€ C) : LipschitzWith C f :=
lipschitzOn_univ.1 <|
convex_univ.lipschitzOnWith_of_nnnorm_deriv_le (fun x _ => hf x) fun x _ => bound x
#align lipschitz_with_of_nnnorm_deriv_le lipschitzWith_of_nnnorm_deriv_le
/-- If `f : π β G`, `π = R` or `π = β`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : Differentiable π f) (hf' : β x, deriv f x = 0)
(x y : π) : f x = f y :=
is_const_of_fderiv_eq_zero hf (fun z => by ext; simp [β deriv_fderiv, hf']) _ _
#align is_const_of_deriv_eq_zero is_const_of_deriv_eq_zero
end Convex
end
/-! ### Functions `[a, b] β β`. -/
section Interval
-- Declare all variables here to make sure they come in a correct order
variable (f f' : β β β) {a b : β} (hab : a < b) (hfc : ContinuousOn f (Icc a b))
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hfd : DifferentiableOn β f (Ioo a b))
(g g' : β β β) (hgc : ContinuousOn g (Icc a b)) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hgd : DifferentiableOn β g (Ioo a b))
/-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
have hI : h a = h b := by simp only; ring
let h' x := (g b - g a) * f' x - (f b - f a) * g' x
have hhh' : β x β Ioo a b, HasDerivAt h (h' x) x := fun x hx =>
((hff' x hx).const_mul (g b - g a)).sub ((hgg' x hx).const_mul (f b - f a))
have hhc : ContinuousOn h (Icc a b) :=
(continuousOn_const.mul hfc).sub (continuousOn_const.mul hgc)
rcases exists_hasDerivAt_eq_zero hab hhc hI hhh' with β¨c, cmem, hcβ©
exact β¨c, cmem, sub_eq_zero.1 hcβ©
#align exists_ratio_has_deriv_at_eq_ratio_slope exists_ratio_hasDerivAt_eq_ratio_slope
/-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c := by
let h x := (lgb - lga) * f x - (lfb - lfa) * g x
have hha : Tendsto h (π[>] a) (π <| lgb * lfa - lfb * lga) := by
have : Tendsto h (π[>] a) (π <| (lgb - lga) * lfa - (lfb - lfa) * lga) :=
(tendsto_const_nhds.mul hfa).sub (tendsto_const_nhds.mul hga)
convert this using 2
ring
have hhb : Tendsto h (π[<] b) (π <| lgb * lfa - lfb * lga) := by
have : Tendsto h (π[<] b) (π <| (lgb - lga) * lfb - (lfb - lfa) * lgb) :=
(tendsto_const_nhds.mul hfb).sub (tendsto_const_nhds.mul hgb)
convert this using 2
| ring | /-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c := by
let h x := (lgb - lga) * f x - (lfb - lfa) * g x
have hha : Tendsto h (π[>] a) (π <| lgb * lfa - lfb * lga) := by
have : Tendsto h (π[>] a) (π <| (lgb - lga) * lfa - (lfb - lfa) * lga) :=
(tendsto_const_nhds.mul hfa).sub (tendsto_const_nhds.mul hga)
convert this using 2
ring
have hhb : Tendsto h (π[<] b) (π <| lgb * lfa - lfb * lga) := by
have : Tendsto h (π[<] b) (π <| (lgb - lga) * lfb - (lfb - lfa) * lgb) :=
(tendsto_const_nhds.mul hfb).sub (tendsto_const_nhds.mul hgb)
convert this using 2
| Mathlib.Analysis.Calculus.MeanValue.742_0.ReDurB0qNQAwk9I | /-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c | Mathlib_Analysis_Calculus_MeanValue |
E : Type u_1
instβΒ³ : NormedAddCommGroup E
instβΒ² : NormedSpace β E
F : Type u_2
instβΒΉ : NormedAddCommGroup F
instβ : NormedSpace β F
f f' : β β β
a b : β
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff'β : β x β Ioo a b, HasDerivAt f (f' x) x
hfd : DifferentiableOn β f (Ioo a b)
g g' : β β β
hgc : ContinuousOn g (Icc a b)
hgg'β : β x β Ioo a b, HasDerivAt g (g' x) x
hgd : DifferentiableOn β g (Ioo a b)
lfa lga lfb lgb : β
hff' : β x β Ioo a b, HasDerivAt f (f' x) x
hgg' : β x β Ioo a b, HasDerivAt g (g' x) x
hfa : Tendsto f (π[>] a) (π lfa)
hga : Tendsto g (π[>] a) (π lga)
hfb : Tendsto f (π[<] b) (π lfb)
hgb : Tendsto g (π[<] b) (π lgb)
h : β β β := fun x => (lgb - lga) * f x - (lfb - lfa) * g x
hha : Tendsto h (π[>] a) (π (lgb * lfa - lfb * lga))
hhb : Tendsto h (π[<] b) (π (lgb * lfa - lfb * lga))
β’ β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c | /-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.AffineMap
import Mathlib.Analysis.Calculus.Deriv.Slope
import Mathlib.Analysis.Calculus.Deriv.Mul
import Mathlib.Analysis.Calculus.Deriv.Comp
import Mathlib.Analysis.Calculus.LocalExtr.Rolle
import Mathlib.Analysis.Convex.Slope
import Mathlib.Analysis.Convex.Normed
import Mathlib.Data.IsROrC.Basic
import Mathlib.Topology.Instances.RealVectorSpace
#align_import analysis.calculus.mean_value from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `Convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `IsROrC`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x β€ B x` or
`βf xβ β€ B x` from upper estimates on `f'` or `βf'β`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βf xβ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `β`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βf x - f aβ β€ C * βx - aβ`; several versions deal with
right derivative and derivative within `[a, b]` (`HasDerivWithinAt` or `derivWithin`).
* `Convex.is_const_of_fderivWithin_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_hasDerivAt_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_hasDerivAt_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `Convex.image_sub_lt_mul_sub_of_deriv_lt`, `Convex.mul_sub_lt_image_sub_of_lt_deriv`,
`Convex.image_sub_le_mul_sub_of_deriv_le`, `Convex.mul_sub_le_image_sub_of_le_deriv`,
if `β x, C (</β€/>/β₯) (f' x)`, then `C * (y - x) (</β€/>/β₯) (f y - f x)` whenever `x < y`.
* `Convex.monotoneOn_of_deriv_nonneg`, `Convex.antitoneOn_of_deriv_nonpos`,
`Convex.strictMono_of_deriv_pos`, `Convex.strictAnti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convexOn_of_deriv`, `convexOn_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `hasStrictFDerivAt_of_hasFDerivAt_of_continuousAt` : a C^1 function over the reals is
strictly differentiable. (This is a corollary of the mean value inequality.)
-/
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace β E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace β F]
open Metric Set Asymptotics ContinuousLinearMap Filter
open scoped Classical Topology NNReal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x := by
change Icc a b β { x | f x β€ B x }
set s := { x | f x β€ B x } β© Icc a b
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_isClosed_of_isClosed isClosed_Icc OrderClosedTopology.isClosed_le'
apply this.Icc_subset_of_forall_exists_gt ha
rintro x β¨hxB : f x β€ B x, xabβ© y hy
cases' hxB.lt_or_eq with hxB hxB
Β· -- If `f x < B x`, then all we need is continuity of both sides
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))
have : βαΆ x in π[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
have : βαΆ x in π[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
exact this.mono fun y => le_of_lt
Β· rcases exists_between (bound x xab hxB) with β¨r, hfr, hrBβ©
specialize hf' x xab r hfr
have HB : βαΆ z in π[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici
(Ioi_mem_nhds hrB)
obtain β¨z, hfz, hzB, hzβ© : β z, slope f x z < r β§ r < slope B x z β§ z β Ioc x y
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi β¨le_rfl, hyβ©))).exists
refine' β¨z, _, hzβ©
have := (hfz.trans hzB).le
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this
#align image_le_of_liminf_slope_right_lt_deriv_boundary' image_le_of_liminf_slope_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope f x z < r)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_liminf_slope_right_lt_deriv_boundary image_le_of_liminf_slope_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_liminf_slope_right_le_deriv_boundary {f : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) {B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) β€ B' x`
(bound : β x β Ico a b, β r, B' x < r β βαΆ z in π[>] x, slope f x z < r) :
β β¦xβ¦, x β Icc a b β f x β€ B x := by
have Hr : β x β Icc a b, β r > 0, f x β€ B x + r * (x - a) := fun x hx r hr => by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
Β· rwa [sub_self, mul_zero, add_zero]
Β· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
Β· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
Β· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
intro x hx
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1 <;> simp
#align image_le_of_liminf_slope_right_le_deriv_boundary image_le_of_liminf_slope_right_le_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary' {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
#align image_le_of_deriv_right_lt_deriv_boundary' image_le_of_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_lt_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, f x = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_le_of_deriv_right_lt_deriv_boundary image_le_of_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a β€ B a`;
* `B` has derivative `B'` everywhere on `β`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x β€ B' x` on `[a, b)`.
Then `f x β€ B x` everywhere on `[a, b]`. -/
theorem image_le_of_deriv_right_le_deriv_boundary {f f' : β β β} {a b : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : f a β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, f' x β€ B' x) : β β¦xβ¦, x β Icc a b β f x β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' fun x hx _ hr =>
(hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
#align image_le_of_deriv_right_le_deriv_boundary image_le_of_deriv_right_le_deriv_boundary
/-! ### Vector-valued functions `f : β β E` -/
section
variable {f : β β E} {a b : β}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x β [a, b)` the right-side limit inferior of `(βf zβ - βf xβ) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. -/
theorem image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[NormedAddCommGroup E] {f : β β E} {f' : β β β} (hf : ContinuousOn f (Icc a b))
-- `hf'` actually says `liminf (βf zβ - βf xβ) / (z - x) β€ f' x`
(hf' : β x β Ico a b, β r, f' x < r β βαΆ z in π[>] x, slope (norm β f) x z < r)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β f' x < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuousOn hf) hf' ha hB
hB' bound
#align image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary' image_norm_le_of_norm_deriv_right_lt_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* the norm of `f'` is strictly less than `B'` whenever `βf xβ = B x`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf xβ = B x β βf' xβ < B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_lt_deriv_boundary image_norm_le_of_norm_deriv_right_lt_deriv_boundary
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : ContinuousOn B (Icc a b))
(hB' : β x β Ico a b, HasDerivWithinAt B (B' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuousOn hf) ha hB hB'
fun x hx _ hr => (hf' x hx).liminf_right_slope_norm_le ((bound x hx).trans_lt hr)
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary' image_norm_le_of_norm_deriv_right_le_deriv_boundary'
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βf aβ β€ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `β`;
* we have `βf' xβ β€ B x` everywhere on `[a, b)`.
Then `βf xβ β€ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
theorem image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : β β E}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
{B B' : β β β} (ha : βf aβ β€ B a) (hB : β x, HasDerivAt B (B' x) x)
(bound : β x β Ico a b, βf' xβ β€ B' x) : β β¦xβ¦, x β Icc a b β βf xβ β€ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(fun x _ => (hB x).continuousAt.continuousWithinAt) (fun x _ => (hB x).hasDerivWithinAt) bound
#align image_norm_le_of_norm_deriv_right_le_deriv_boundary image_norm_le_of_norm_deriv_right_le_deriv_boundary
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βf x - f aβ β€ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : β β E} {C : β}
(hf : ContinuousOn f (Icc a b)) (hf' : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
let g x := f x - f a
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
have hg' : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x := by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
let B x := C * (x - a)
have hB : β x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
simp only; rw [sub_self, norm_zero, sub_self, mul_zero]
#align norm_image_sub_le_of_norm_deriv_right_le_segment norm_image_sub_le_of_norm_deriv_right_le_segment
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : β β E} {C : β}
(hf : β x β Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x)
(bound : β x β Ico a b, βf' xβ β€ C) : β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt)
(fun x hx => _) bound
exact (hf x <| Ico_subset_Icc_self hx).mono_of_mem (Icc_mem_nhdsWithin_Ici hx)
#align norm_image_sub_le_of_norm_deriv_le_segment' norm_image_sub_le_of_norm_deriv_le_segment'
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βf x - f aβ β€ C * (x - a)`, `derivWithin`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : β} (hf : DifferentiableOn β f (Icc a b))
(bound : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ C) :
β x β Icc a b, βf x - f aβ β€ C * (x - a) := by
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
exact fun x hx => (hf x hx).hasDerivWithinAt
#align norm_image_sub_le_of_norm_deriv_le_segment norm_image_sub_le_of_norm_deriv_le_segment
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `HasDerivWithinAt`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : β β E} {C : β}
(hf : β x β Icc (0 : β) 1, HasDerivWithinAt f (f' x) (Icc (0 : β) 1) x)
(bound : β x β Ico (0 : β) 1, βf' xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01' norm_image_sub_le_of_norm_deriv_le_segment_01'
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βf 1 - f 0β β€ C`, `derivWithin` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : β}
(hf : DifferentiableOn β f (Icc (0 : β) 1))
(bound : β x β Ico (0 : β) 1, βderivWithin f (Icc (0 : β) 1) xβ β€ C) : βf 1 - f 0β β€ C := by
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
#align norm_image_sub_le_of_norm_deriv_le_segment_01 norm_image_sub_le_of_norm_deriv_le_segment_01
theorem constant_of_has_deriv_right_zero (hcont : ContinuousOn f (Icc a b))
(hderiv : β x β Ico a b, HasDerivWithinAt f 0 (Ici x) x) : β x β Icc a b, f x = f a := by
have : β x β Icc a b, βf x - f aβ β€ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
#align constant_of_has_deriv_right_zero constant_of_has_deriv_right_zero
theorem constant_of_derivWithin_zero (hdiff : DifferentiableOn β f (Icc a b))
(hderiv : β x β Ico a b, derivWithin f (Icc a b) x = 0) : β x β Icc a b, f x = f a := by
have H : β x β Ico a b, βderivWithin f (Icc a b) xβ β€ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
#align constant_of_deriv_within_zero constant_of_derivWithin_zero
variable {f' g : β β E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq (derivf : β x β Ico a b, HasDerivWithinAt f (f' x) (Ici x) x)
(derivg : β x β Ico a b, HasDerivWithinAt g (f' x) (Ici x) x) (fcont : ContinuousOn f (Icc a b))
(gcont : ContinuousOn g (Icc a b)) (hi : f a = g a) : β y β Icc a b, f y = g y := by
simp only [β @sub_eq_zero _ _ (f _)] at hi β’
exact hi βΈ constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
#align eq_of_has_deriv_right_eq eq_of_has_deriv_right_eq
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_derivWithin_eq (fdiff : DifferentiableOn β f (Icc a b))
(gdiff : DifferentiableOn β g (Icc a b))
(hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)) (hi : f a = g a) :
β y β Icc a b, f y = g y := by
have A : β y β Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
have B : β y β Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.mono_of_mem (Icc_mem_nhdsWithin_Ici hy)
exact
eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm βΈ B y hy) fdiff.continuousOn
gdiff.continuousOn hi
#align eq_of_deriv_within_eq eq_of_derivWithin_eq
end
/-!
### Vector-valued functions `f : E β G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[IsROrC π] [NormedSpace π E] [NormedSpace π G]` to achieve this result. For the domain `E` we
also assume `[NormedSpace β E]` to have a notion of a `Convex` set. -/
section
variable {π G : Type*} [IsROrC π] [NormedSpace π E] [NormedAddCommGroup G] [NormedSpace π G]
namespace Convex
variable {f g : E β G} {C : β} {s : Set E} {x y : E} {f' g' : E β E βL[π] G} {Ο : E βL[π] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ := by
letI : NormedSpace β G := RestrictScalars.normedSpace β π G
/- By composition with `AffineMap.lineMap x y`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
set g := (AffineMap.lineMap x y : β β E)
have segm : MapsTo g (Icc 0 1 : Set β) s := hs.mapsTo_lineMap xs ys
have hD : β t β Icc (0 : β) 1,
HasDerivWithinAt (f β g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars β).comp_hasDerivWithinAt _
AffineMap.hasDerivWithinAt_lineMap segm
have bound : β t β Ico (0 : β) 1, βf' (g t) (y - x)β β€ C * βy - xβ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `HasFDerivWithinAt` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasFDerivWithin_le {C : ββ₯0}
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C)
(hs : Convex β s) : LipschitzOnWith C f s := by
rw [lipschitzOnWith_iff_norm_sub_le]
intro x x_in y y_in
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
#align convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt` for a version that claims
existence of `K` instead of an explicit estimate. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt (hs : Convex β s)
{f : E β G} (hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y)
(hcont : ContinuousWithinAt f' s x) (K : ββ₯0) (hK : βf' xββ < K) :
β t β π[s] x, LipschitzOnWith K f t := by
obtain β¨Ξ΅, Ξ΅0, hΞ΅β© : β Ξ΅ > 0, ball x Ξ΅ β© s β { y | HasFDerivWithinAt f (f' y) s y β§ βf' yββ < K }
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
rw [inter_comm] at hΞ΅
refine' β¨s β© ball x Ξ΅, inter_mem_nhdsWithin _ (ball_mem_nhds _ Ξ΅0), _β©
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hΞ΅ hy).1.mono (inter_subset_left _ _)) fun y hy => (hΞ΅ hy).2.le
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ββ₯0` larger than `βf' xββ`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
theorem exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt (hs : Convex β s) {f : E β G}
(hder : βαΆ y in π[s] x, HasFDerivWithinAt f (f' y) s y) (hcont : ContinuousWithinAt f' s x) :
β K, β t β π[s] x, LipschitzOnWith K f t :=
(exists_gt _).imp <|
hs.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt hder hcont
#align convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le Convex.norm_image_sub_le_of_norm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderivWithin` and
`LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderivWithin_le {C : ββ₯0} (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_within_le Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le Convex.norm_image_sub_le_of_norm_fderiv_le
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_fderiv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_fderiv_le Convex.lipschitzOnWith_of_nnnorm_fderiv_le
/-- The mean value theorem: if the derivative of a function is bounded by `C`, then the function is
`C`-Lipschitz. Version with `fderiv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_fderiv_le
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
{C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βfderiv π f xββ β€ C) : LipschitzWith C f := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
rw [β lipschitzOn_univ]
exact lipschitzOnWith_of_nnnorm_fderiv_le (fun x _ β¦ hf x) (fun x _ β¦ bound x) convex_univ
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`HasFDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasFDerivWithin_le'
(hf : β x β s, HasFDerivWithinAt f (f' x) s x) (bound : β x β s, βf' x - Οβ β€ C)
(hs : Convex β s) (xs : x β s) (ys : y β s) : βf y - f x - Ο (y - x)β β€ C * βy - xβ := by
/- We subtract `Ο` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g y := f y - Ο y
have hg : β x β s, HasFDerivWithinAt g (f' x - Ο) s x := fun x xs =>
(hf x xs).sub Ο.hasFDerivWithinAt
calc
βf y - f x - Ο (y - x)β = βf y - f x - (Ο y - Ο x)β := by simp
_ = βf y - Ο y - (f x - Ο x)β := by congr 1; abel
_ = βg y - g xβ := by simp
_ β€ C * βy - xβ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
#align convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderivWithin`. -/
theorem norm_image_sub_le_of_norm_fderivWithin_le' (hf : DifferentiableOn π f s)
(bound : β x β s, βfderivWithin π f s x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le' (fun x hx => (hf x hx).hasFDerivWithinAt) bound
xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_within_le' Convex.norm_image_sub_le_of_norm_fderivWithin_le'
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le' (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βfderiv π f x - Οβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f x - Ο (y - x)β β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasFDerivWithin_le'
(fun x hx => (hf x hx).hasFDerivAt.hasFDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_fderiv_le' Convex.norm_image_sub_le_of_norm_fderiv_le'
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderivWithin_eq_zero (hs : Convex β s) (hf : DifferentiableOn π f s)
(hf' : β x β s, fderivWithin π f s x = 0) (hx : x β s) (hy : y β s) : f x = f y := by
have bound : β x β s, βfderivWithin π f s xβ β€ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
#align convex.is_const_of_fderiv_within_eq_zero Convex.is_const_of_fderivWithin_eq_zero
theorem _root_.is_const_of_fderiv_eq_zero
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f : E β G}
(hf : Differentiable π f) (hf' : β x, fderiv π f x = 0)
(x y : E) : f x = f y := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
exact convex_univ.is_const_of_fderivWithin_eq_zero hf.differentiableOn
(fun x _ => by rw [fderivWithin_univ]; exact hf' x) trivial trivial
#align is_const_of_fderiv_eq_zero is_const_of_fderiv_eq_zero
/-- If two functions have equal FrΓ©chet derivatives at every point of a convex set, and are equal at
one point in that set, then they are equal on that set. -/
theorem eqOn_of_fderivWithin_eq (hs : Convex β s) (hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s) (hs' : UniqueDiffOn π s)
(hf' : β x β s, fderivWithin π f s x = fderivWithin π g s x) (hx : x β s) (hfgx : f x = g x) :
s.EqOn f g := fun y hy => by
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
#align convex.eq_on_of_fderiv_within_eq Convex.eqOn_of_fderivWithin_eq
theorem _root_.eq_of_fderiv_eq
{E : Type*} [NormedAddCommGroup E] [NormedSpace π E] {f g : E β G}
(hf : Differentiable π f) (hg : Differentiable π g)
(hf' : β x, fderiv π f x = fderiv π g x) (x : E) (hfgx : f x = g x) : f = g := by
let A : NormedSpace β E := RestrictScalars.normedSpace β π E
suffices Set.univ.EqOn f g from funext fun x => this <| mem_univ x
exact convex_univ.eqOn_of_fderivWithin_eq hf.differentiableOn hg.differentiableOn
uniqueDiffOn_univ (fun x _ => by simpa using hf' _) (mem_univ _) hfgx
#align eq_of_fderiv_eq eq_of_fderiv_eq
end Convex
namespace Convex
variable {f f' : π β G} {s : Set π} {x y : π}
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `HasDerivWithinAt`. -/
theorem norm_image_sub_le_of_norm_hasDerivWithin_le {C : β}
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xβ β€ C) (hs : Convex β s)
(xs : x β s) (ys : y β s) : βf y - f xβ β€ C * βy - xβ :=
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs xs ys
#align convex.norm_image_sub_le_of_norm_has_deriv_within_le Convex.norm_image_sub_le_of_norm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `HasDerivWithinAt` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_hasDerivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : β x β s, HasDerivWithinAt f (f' x) s x) (bound : β x β s, βf' xββ β€ C) :
LipschitzOnWith C f s :=
Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x hx => (hf x hx).hasFDerivWithinAt)
(fun x hx => le_trans (by simp) (bound x hx)) hs
#align convex.lipschitz_on_with_of_nnnorm_has_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function within
this set is bounded by `C`, then the function is `C`-Lipschitz. Version with `derivWithin` -/
theorem norm_image_sub_le_of_norm_derivWithin_le {C : β} (hf : DifferentiableOn π f s)
(bound : β x β s, βderivWithin f s xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound xs
ys
#align convex.norm_image_sub_le_of_norm_deriv_within_le Convex.norm_image_sub_le_of_norm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `derivWithin` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_derivWithin_le {C : ββ₯0} (hs : Convex β s)
(hf : DifferentiableOn π f s) (bound : β x β s, βderivWithin f s xββ β€ C) :
LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le (fun x hx => (hf x hx).hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_within_le Convex.lipschitzOnWith_of_nnnorm_derivWithin_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `deriv`. -/
theorem norm_image_sub_le_of_norm_deriv_le {C : β} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xβ β€ C) (hs : Convex β s) (xs : x β s) (ys : y β s) :
βf y - f xβ β€ C * βy - xβ :=
hs.norm_image_sub_le_of_norm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound xs ys
#align convex.norm_image_sub_le_of_norm_deriv_le Convex.norm_image_sub_le_of_norm_deriv_le
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `deriv` and `LipschitzOnWith`. -/
theorem lipschitzOnWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : β x β s, DifferentiableAt π f x)
(bound : β x β s, βderiv f xββ β€ C) (hs : Convex β s) : LipschitzOnWith C f s :=
hs.lipschitzOnWith_of_nnnorm_hasDerivWithin_le
(fun x hx => (hf x hx).hasDerivAt.hasDerivWithinAt) bound
#align convex.lipschitz_on_with_of_nnnorm_deriv_le Convex.lipschitzOnWith_of_nnnorm_deriv_le
/-- The mean value theorem set in dimension 1: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `deriv` and `LipschitzWith`. -/
theorem _root_.lipschitzWith_of_nnnorm_deriv_le {C : ββ₯0} (hf : Differentiable π f)
(bound : β x, βderiv f xββ β€ C) : LipschitzWith C f :=
lipschitzOn_univ.1 <|
convex_univ.lipschitzOnWith_of_nnnorm_deriv_le (fun x _ => hf x) fun x _ => bound x
#align lipschitz_with_of_nnnorm_deriv_le lipschitzWith_of_nnnorm_deriv_le
/-- If `f : π β G`, `π = R` or `π = β`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : Differentiable π f) (hf' : β x, deriv f x = 0)
(x y : π) : f x = f y :=
is_const_of_fderiv_eq_zero hf (fun z => by ext; simp [β deriv_fderiv, hf']) _ _
#align is_const_of_deriv_eq_zero is_const_of_deriv_eq_zero
end Convex
end
/-! ### Functions `[a, b] β β`. -/
section Interval
-- Declare all variables here to make sure they come in a correct order
variable (f f' : β β β) {a b : β} (hab : a < b) (hfc : ContinuousOn f (Icc a b))
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hfd : DifferentiableOn β f (Ioo a b))
(g g' : β β β) (hgc : ContinuousOn g (Icc a b)) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hgd : DifferentiableOn β g (Ioo a b))
/-- Cauchy's **Mean Value Theorem**, `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope :
β c β Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c := by
let h x := (g b - g a) * f x - (f b - f a) * g x
have hI : h a = h b := by simp only; ring
let h' x := (g b - g a) * f' x - (f b - f a) * g' x
have hhh' : β x β Ioo a b, HasDerivAt h (h' x) x := fun x hx =>
((hff' x hx).const_mul (g b - g a)).sub ((hgg' x hx).const_mul (f b - f a))
have hhc : ContinuousOn h (Icc a b) :=
(continuousOn_const.mul hfc).sub (continuousOn_const.mul hgc)
rcases exists_hasDerivAt_eq_zero hab hhc hI hhh' with β¨c, cmem, hcβ©
exact β¨c, cmem, sub_eq_zero.1 hcβ©
#align exists_ratio_has_deriv_at_eq_ratio_slope exists_ratio_hasDerivAt_eq_ratio_slope
/-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c := by
let h x := (lgb - lga) * f x - (lfb - lfa) * g x
have hha : Tendsto h (π[>] a) (π <| lgb * lfa - lfb * lga) := by
have : Tendsto h (π[>] a) (π <| (lgb - lga) * lfa - (lfb - lfa) * lga) :=
(tendsto_const_nhds.mul hfa).sub (tendsto_const_nhds.mul hga)
convert this using 2
ring
have hhb : Tendsto h (π[<] b) (π <| lgb * lfa - lfb * lga) := by
have : Tendsto h (π[<] b) (π <| (lgb - lga) * lfb - (lfb - lfa) * lgb) :=
(tendsto_const_nhds.mul hfb).sub (tendsto_const_nhds.mul hgb)
convert this using 2
ring
| let h' x := (lgb - lga) * f' x - (lfb - lfa) * g' x | /-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c := by
let h x := (lgb - lga) * f x - (lfb - lfa) * g x
have hha : Tendsto h (π[>] a) (π <| lgb * lfa - lfb * lga) := by
have : Tendsto h (π[>] a) (π <| (lgb - lga) * lfa - (lfb - lfa) * lga) :=
(tendsto_const_nhds.mul hfa).sub (tendsto_const_nhds.mul hga)
convert this using 2
ring
have hhb : Tendsto h (π[<] b) (π <| lgb * lfa - lfb * lga) := by
have : Tendsto h (π[<] b) (π <| (lgb - lga) * lfb - (lfb - lfa) * lgb) :=
(tendsto_const_nhds.mul hfb).sub (tendsto_const_nhds.mul hgb)
convert this using 2
ring
| Mathlib.Analysis.Calculus.MeanValue.742_0.ReDurB0qNQAwk9I | /-- Cauchy's **Mean Value Theorem**, extended `HasDerivAt` version. -/
theorem exists_ratio_hasDerivAt_eq_ratio_slope' {lfa lga lfb lgb : β}
(hff' : β x β Ioo a b, HasDerivAt f (f' x) x) (hgg' : β x β Ioo a b, HasDerivAt g (g' x) x)
(hfa : Tendsto f (π[>] a) (π lfa)) (hga : Tendsto g (π[>] a) (π lga))
(hfb : Tendsto f (π[<] b) (π lfb)) (hgb : Tendsto g (π[<] b) (π lgb)) :
β c β Ioo a b, (lgb - lga) * f' c = (lfb - lfa) * g' c | Mathlib_Analysis_Calculus_MeanValue |