state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
---|---|---|---|---|---|---|
case mp
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J K L : Ideal R
x y : R
⊢ (∃ a b, y ∣ b ∧ a * x + b = 1) → IsCoprime x y | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· | rintro ⟨a, _, ⟨b, rfl⟩, e⟩ | theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· | Mathlib.RingTheory.Ideal.Operations.876_0.5qK551sG47yBciY | theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y | Mathlib_RingTheory_Ideal_Operations |
case mp.intro.intro.intro.intro
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J K L : Ideal R
x y a b : R
e : a * x + y * b = 1
⊢ IsCoprime x y | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; | exact ⟨a, b, mul_comm b y ▸ e⟩ | theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; | Mathlib.RingTheory.Ideal.Operations.876_0.5qK551sG47yBciY | theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y | Mathlib_RingTheory_Ideal_Operations |
case mpr
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J K L : Ideal R
x y : R
⊢ IsCoprime x y → ∃ a b, y ∣ b ∧ a * x + b = 1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· | rintro ⟨a, b, e⟩ | theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· | Mathlib.RingTheory.Ideal.Operations.876_0.5qK551sG47yBciY | theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y | Mathlib_RingTheory_Ideal_Operations |
case mpr.intro.intro
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J K L : Ideal R
x y a b : R
e : a * x + b * y = 1
⊢ ∃ a b, y ∣ b ∧ a * x + b = 1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; | exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩ | theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; | Mathlib.RingTheory.Ideal.Operations.876_0.5qK551sG47yBciY | theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J✝ K L : Ideal R
J : ι → Ideal R
s : Finset ι
hf : ∀ j ∈ s, IsCoprime I (J j)
⊢ IsCoprime I (⨅ j ∈ s, J j) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
| classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf | theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
| Mathlib.RingTheory.Ideal.Operations.884_0.5qK551sG47yBciY | theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J✝ K L : Ideal R
J : ι → Ideal R
s : Finset ι
hf : ∀ j ∈ s, IsCoprime I (J j)
⊢ IsCoprime I (⨅ j ∈ s, J j) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
| simp_rw [isCoprime_iff_add] at * | theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
| Mathlib.RingTheory.Ideal.Operations.884_0.5qK551sG47yBciY | theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J✝ K L : Ideal R
J : ι → Ideal R
s : Finset ι
hf : ∀ j ∈ s, I + J j = 1
⊢ I + ⨅ j ∈ s, J j = 1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
| induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf | theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
| Mathlib.RingTheory.Ideal.Operations.884_0.5qK551sG47yBciY | theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J✝ K L : Ideal R
J : ι → Ideal R
s : Finset ι
hf : ∀ j ∈ s, I + J j = 1
⊢ I + ⨅ j ∈ s, J j = 1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
| induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf | theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
| Mathlib.RingTheory.Ideal.Operations.884_0.5qK551sG47yBciY | theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) | Mathlib_RingTheory_Ideal_Operations |
case empty
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J✝ K L : Ideal R
J : ι → Ideal R
hf : ∀ j ∈ ∅, I + J j = 1
⊢ I + ⨅ j ∈ ∅, J j = 1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| | empty =>
simp | theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| Mathlib.RingTheory.Ideal.Operations.884_0.5qK551sG47yBciY | theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) | Mathlib_RingTheory_Ideal_Operations |
case empty
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J✝ K L : Ideal R
J : ι → Ideal R
hf : ∀ j ∈ ∅, I + J j = 1
⊢ I + ⨅ j ∈ ∅, J j = 1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
| simp | theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
| Mathlib.RingTheory.Ideal.Operations.884_0.5qK551sG47yBciY | theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) | Mathlib_RingTheory_Ideal_Operations |
case insert
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J✝ K L : Ideal R
J : ι → Ideal R
i : ι
s : Finset ι
a✝ : i ∉ s
hs : (∀ j ∈ s, I + J j = 1) → I + ⨅ j ∈ s, J j = 1
hf : ∀ j ∈ insert i s, I + J j = 1
⊢ I + ⨅ j ∈ insert i s, J j = 1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| | @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf | theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| Mathlib.RingTheory.Ideal.Operations.884_0.5qK551sG47yBciY | theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) | Mathlib_RingTheory_Ideal_Operations |
case insert
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J✝ K L : Ideal R
J : ι → Ideal R
i : ι
s : Finset ι
a✝ : i ∉ s
hs : (∀ j ∈ s, I + J j = 1) → I + ⨅ j ∈ s, J j = 1
hf : ∀ j ∈ insert i s, I + J j = 1
⊢ I + ⨅ j ∈ insert i s, J j = 1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
| rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top] | theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
| Mathlib.RingTheory.Ideal.Operations.884_0.5qK551sG47yBciY | theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) | Mathlib_RingTheory_Ideal_Operations |
case insert
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J✝ K L : Ideal R
J : ι → Ideal R
i : ι
s : Finset ι
a✝ : i ∉ s
hs : (∀ j ∈ s, I + J j = 1) → I + ⨅ j ∈ s, J j = 1
hf : ∀ j ∈ insert i s, I + J j = 1
⊢ 1 ≤ I + (⨅ x ∈ s, J x) ⊓ J i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
| set K := ⨅ j ∈ s, J j | theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
| Mathlib.RingTheory.Ideal.Operations.884_0.5qK551sG47yBciY | theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) | Mathlib_RingTheory_Ideal_Operations |
case insert
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J✝ K✝ L : Ideal R
J : ι → Ideal R
i : ι
s : Finset ι
a✝ : i ∉ s
hf : ∀ j ∈ insert i s, I + J j = 1
K : Ideal R := ⨅ j ∈ s, J j
hs : (∀ j ∈ s, I + J j = 1) → I + K = 1
⊢ 1 ≤ I + K ⊓ J i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
| calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf | theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
| Mathlib.RingTheory.Ideal.Operations.884_0.5qK551sG47yBciY | theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J✝ K✝ L : Ideal R
J : ι → Ideal R
i : ι
s : Finset ι
a✝ : i ∉ s
hf : ∀ j ∈ insert i s, I + J j = 1
K : Ideal R := ⨅ j ∈ s, J j
hs : (∀ j ∈ s, I + J j = 1) → I + K = 1
⊢ I + K = I + K * (I + J i) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by | rw [hf i (Finset.mem_insert_self i s), mul_one] | theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by | Mathlib.RingTheory.Ideal.Operations.884_0.5qK551sG47yBciY | theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J✝ K✝ L : Ideal R
J : ι → Ideal R
i : ι
s : Finset ι
a✝ : i ∉ s
hf : ∀ j ∈ insert i s, I + J j = 1
K : Ideal R := ⨅ j ∈ s, J j
hs : (∀ j ∈ s, I + J j = 1) → I + K = 1
⊢ I + K * (I + J i) = (1 + K) * I + K * J i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by | ring | theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by | Mathlib.RingTheory.Ideal.Operations.884_0.5qK551sG47yBciY | theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I✝ J K L I : Ideal R
r s : R
⊢ s ∈
{
toAddSubsemigroup :=
{ carrier := {r | ∃ n, r ^ n ∈ I},
add_mem' :=
(_ :
∀ {x y : R}, x ∈ {r | ∃ n, r ^ n ∈ I} → y ∈ {r | ∃ n, r ^ n ∈ I} → x + y ∈ {r | ∃ n, r ^ n ∈ I}) },
zero_mem' := (_ : ∃ n, 0 ^ n ∈ I) }.toAddSubsemigroup.carrier →
r • s ∈
{
toAddSubsemigroup :=
{ carrier := {r | ∃ n, r ^ n ∈ I},
add_mem' :=
(_ :
∀ {x y : R}, x ∈ {r | ∃ n, r ^ n ∈ I} → y ∈ {r | ∃ n, r ^ n ∈ I} → x + y ∈ {r | ∃ n, r ^ n ∈ I}) },
zero_mem' := (_ : ∃ n, 0 ^ n ∈ I) }.toAddSubsemigroup.carrier | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by | exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩ | /-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by | Mathlib.RingTheory.Ideal.Operations.900_0.5qK551sG47yBciY | /-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J K L : Ideal R
⊢ radical I = I ↔ IsRadical I | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
| rw [le_antisymm_iff, and_iff_left le_radical, IsRadical] | /-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
| Mathlib.RingTheory.Ideal.Operations.932_0.5qK551sG47yBciY | /-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J K L : Ideal R
⊢ radical (I * J) = radical I ⊓ radical J | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
| refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩ | theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
| Mathlib.RingTheory.Ideal.Operations.1002_0.5qK551sG47yBciY | theorem radical_mul : radical (I * J) = radical I ⊓ radical J | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J K L : Ideal R
⊢ radical (I * J) ≤ radical I ⊓ radical J | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
| have := radical_mono <| @mul_le_inf _ _ I J | theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
| Mathlib.RingTheory.Ideal.Operations.1002_0.5qK551sG47yBciY | theorem radical_mul : radical (I * J) = radical I ⊓ radical J | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J K L : Ideal R
this : radical (I * J) ≤ radical (I ⊓ J)
⊢ radical (I * J) ≤ radical I ⊓ radical J | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
| simp_rw [radical_inf I J] at this | theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
| Mathlib.RingTheory.Ideal.Operations.1002_0.5qK551sG47yBciY | theorem radical_mul : radical (I * J) = radical I ⊓ radical J | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J K L : Ideal R
this : radical (I * J) ≤ radical I ⊓ radical J
⊢ radical (I * J) ≤ radical I ⊓ radical J | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
| assumption | theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
| Mathlib.RingTheory.Ideal.Operations.1002_0.5qK551sG47yBciY | theorem radical_mul : radical (I * J) = radical I ⊓ radical J | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I✝ J K L I : Ideal R
r : R
hr : r ∈ sInf {J | I ≤ J ∧ IsPrime J}
hri : r ∉ radical I
m : Ideal R
hrm : r ∉ radical m
him : I ≤ m
hm : ∀ z ∈ {K | r ∉ radical K}, m ≤ z → z = m
this : ∀ x ∉ m, r ∈ radical (m ⊔ span {x})
⊢ m ≠ ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by | rintro rfl | theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by | Mathlib.RingTheory.Ideal.Operations.1016_0.5qK551sG47yBciY | theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I✝ J K L I : Ideal R
r : R
hr : r ∈ sInf {J | I ≤ J ∧ IsPrime J}
hri : r ∉ radical I
hrm : r ∉ radical ⊤
him : I ≤ ⊤
hm : ∀ z ∈ {K | r ∉ radical K}, ⊤ ≤ z → z = ⊤
this : ∀ x ∉ ⊤, r ∈ radical (⊤ ⊔ span {x})
⊢ False | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; | rw [radical_top] at hrm | theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; | Mathlib.RingTheory.Ideal.Operations.1016_0.5qK551sG47yBciY | theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I✝ J K L I : Ideal R
r : R
hr : r ∈ sInf {J | I ≤ J ∧ IsPrime J}
hri : r ∉ radical I
hrm : r ∉ ⊤
him : I ≤ ⊤
hm : ∀ z ∈ {K | r ∉ radical K}, ⊤ ≤ z → z = ⊤
this : ∀ x ∉ ⊤, r ∈ radical (⊤ ⊔ span {x})
⊢ False | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; | exact hrm trivial | theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; | Mathlib.RingTheory.Ideal.Operations.1016_0.5qK551sG47yBciY | theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I✝ J K L I : Ideal R
r : R
hr : r ∈ sInf {J | I ≤ J ∧ IsPrime J}
hri : r ∉ radical I
m : Ideal R
hrm : r ∉ radical m
him : I ≤ m
hm : ∀ z ∈ {K | r ∉ radical K}, m ≤ z → z = m
this : ∀ x ∉ m, r ∈ radical (m ⊔ span {x})
x y : R
hxym : x * y ∈ m
hxm : x ∉ m
hym : y ∉ m
n : ℕ
hrn : r ^ n ∈ m ⊔ span {x}
p : R
hpm : p ∈ m
q : R
hq : q ∈ span {x}
hpqrn : p + q = r ^ n
c : R
hcxq : c * x = q
k : ℕ
hrk : r ^ k ∈ m ⊔ span {y}
f : R
hfm : f ∈ m
g : R
hg : g ∈ span {y}
hfgrk : f + g = r ^ k
d : R
hdyg : d * y = g
⊢ r ^ (n + k) ∈ m | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
| rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc] | theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
| Mathlib.RingTheory.Ideal.Operations.1016_0.5qK551sG47yBciY | theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I✝ J K L I : Ideal R
r : R
hr : r ∈ sInf {J | I ≤ J ∧ IsPrime J}
hri : r ∉ radical I
m : Ideal R
hrm : r ∉ radical m
him : I ≤ m
hm : ∀ z ∈ {K | r ∉ radical K}, m ≤ z → z = m
this : ∀ x ∉ m, r ∈ radical (m ⊔ span {x})
x y : R
hxym : x * y ∈ m
hxm : x ∉ m
hym : y ∉ m
n : ℕ
hrn : r ^ n ∈ m ⊔ span {x}
p : R
hpm : p ∈ m
q : R
hq : q ∈ span {x}
hpqrn : p + q = r ^ n
c : R
hcxq : c * x = q
k : ℕ
hrk : r ^ k ∈ m ⊔ span {y}
f : R
hfm : f ∈ m
g : R
hg : g ∈ span {y}
hfgrk : f + g = r ^ k
d : R
hdyg : d * y = g
⊢ p * (f + d * y) + (c * x * f + c * d * (x * y)) ∈ m | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
| refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym)) | theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
| Mathlib.RingTheory.Ideal.Operations.1016_0.5qK551sG47yBciY | theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J K L : Ideal R
n✝ n : ℕ
ih : ⊤ ^ n = ⊤
⊢ ⊤ ^ Nat.succ n = ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by | rw [pow_succ, ih, top_mul] | theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by | Mathlib.RingTheory.Ideal.Operations.1068_0.5qK551sG47yBciY | theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J K L : Ideal R
n : ℕ
H : n > 0
⊢ ¬Nat.zero > 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by | decide | theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by | Mathlib.RingTheory.Ideal.Operations.1076_0.5qK551sG47yBciY | theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J K L : Ideal R
n✝ : ℕ
H✝¹ : n✝ > 0
n : ℕ
ih : n > 0 → radical (I ^ n) = radical I
H✝ : Nat.succ n > 0
H : 0 < n
⊢ radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
| rw [pow_succ] | theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
| Mathlib.RingTheory.Ideal.Operations.1076_0.5qK551sG47yBciY | theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J K L : Ideal R
n✝ : ℕ
H✝¹ : n✝ > 0
n : ℕ
ih : n > 0 → radical (I ^ n) = radical I
H✝ : Nat.succ n > 0
H : 0 < n
⊢ radical (I * I ^ n) = radical I ⊓ radical (I ^ n) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
| exact radical_mul _ _ | theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
| Mathlib.RingTheory.Ideal.Operations.1076_0.5qK551sG47yBciY | theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J K L : Ideal R
n✝ : ℕ
H✝¹ : n✝ > 0
n : ℕ
ih : n > 0 → radical (I ^ n) = radical I
H✝ : Nat.succ n > 0
H : 0 < n
⊢ radical I ⊓ radical (I ^ n) = radical I ⊓ radical I | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by | rw [ih H] | theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by | Mathlib.RingTheory.Ideal.Operations.1076_0.5qK551sG47yBciY | theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I✝ J✝ K L I J P : Ideal R
hp : IsPrime P
⊢ I * J ≤ P ↔ I ≤ P ∨ J ≤ P | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
| rw [or_comm, Ideal.mul_le] | theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
| Mathlib.RingTheory.Ideal.Operations.1092_0.5qK551sG47yBciY | theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I✝ J✝ K L I J P : Ideal R
hp : IsPrime P
⊢ (∀ r ∈ I, ∀ s ∈ J, r * s ∈ P) ↔ J ≤ P ∨ I ≤ P | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
| simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left] | theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
| Mathlib.RingTheory.Ideal.Operations.1092_0.5qK551sG47yBciY | theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J K L : Ideal R
s : Multiset (Ideal R)
P : Ideal R
hp : IsPrime P
⊢ Multiset.prod 0 ≤ P ↔ ∃ I ∈ 0, I ≤ P | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by | simp [hp.ne_top] | theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by | Mathlib.RingTheory.Ideal.Operations.1101_0.5qK551sG47yBciY | theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I✝ J K L : Ideal R
s✝ : Multiset (Ideal R)
P : Ideal R
hp : IsPrime P
I : Ideal R
s : Multiset (Ideal R)
ih : Multiset.prod s ≤ P ↔ ∃ I ∈ s, I ≤ P
⊢ Multiset.prod (I ::ₘ s) ≤ P ↔ ∃ I_1 ∈ I ::ₘ s, I_1 ≤ P | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by | simp [hp.mul_le, ih] | theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by | Mathlib.RingTheory.Ideal.Operations.1101_0.5qK551sG47yBciY | theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J K L : Ideal R
s : Multiset ι
f : ι → Ideal R
P : Ideal R
hp : IsPrime P
⊢ Multiset.prod (Multiset.map f s) ≤ P ↔ ∃ i ∈ s, f i ≤ P | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
| simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and] | theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
| Mathlib.RingTheory.Ideal.Operations.1106_0.5qK551sG47yBciY | theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P | Mathlib_RingTheory_Ideal_Operations |
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
s : Finset ι
f : ι → Ideal R
a b : ι
hp : ∀ i ∈ s, IsPrime (f i)
I : Ideal R
⊢ ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
| suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩ | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
s : Finset ι
f : ι → Ideal R
a b : ι
hp : ∀ i ∈ s, IsPrime (f i)
I : Ideal R
this : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
h✝ : I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
h : I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
x✝ : ∃ i ∈ s, I ≤ f i
i : ι
his : i ∈ s
hi : I ≤ f i
⊢ ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
| refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _ | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
s : Finset ι
f : ι → Ideal R
a b : ι
hp : ∀ i ∈ s, IsPrime (f i)
I : Ideal R
this : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
h✝ : I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
h : I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
x✝ : ∃ i ∈ s, I ≤ f i
i : ι
his : i ∈ s
hi : I ≤ f i
⊢ ↑(f i) ⊆ ⋃ i ∈ ↑s, ↑(f i) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
| exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his) | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
s : Finset ι
f : ι → Ideal R
a b : ι
hp : ∀ i ∈ s, IsPrime (f i)
I : Ideal R
⊢ ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
| generalize hn : s.card = n | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
s : Finset ι
f : ι → Ideal R
a b : ι
hp : ∀ i ∈ s, IsPrime (f i)
I : Ideal R
n : ℕ
hn : Finset.card s = n
⊢ ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; | intro h | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; | Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
s : Finset ι
f : ι → Ideal R
a b : ι
hp : ∀ i ∈ s, IsPrime (f i)
I : Ideal R
n : ℕ
hn : Finset.card s = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i)
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
| induction' n with n ih generalizing a b s | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case zero
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
s : Finset ι
a b : ι
hp : ∀ i ∈ s, IsPrime (f i)
hn : Finset.card s = Nat.zero
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i)
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· | clear hp | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· | Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case zero
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
s : Finset ι
a b : ι
hn : Finset.card s = Nat.zero
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i)
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
| rw [Finset.card_eq_zero] at hn | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case zero
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
s : Finset ι
a b : ι
hn : s = ∅
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i)
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
| subst hn | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case zero
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
a b : ι
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑∅, ↑(f i)
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ ∅, I ≤ f i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
| rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case zero
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
a b : ι
h : I ≤ f a ∨ I ≤ f b
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ ∅, I ≤ f i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
| simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff] | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case succ
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
s : Finset ι
a b : ι
hp : ∀ i ∈ s, IsPrime (f i)
hn : Finset.card s = Nat.succ n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i)
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
| classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt) | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case succ
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
s : Finset ι
a b : ι
hp : ∀ i ∈ s, IsPrime (f i)
hn : Finset.card s = Nat.succ n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i)
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
| replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case succ
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
s : Finset ι
a b : ι
hp : ∀ i ∈ s, IsPrime (f i)
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i)
hn : ∃ i t, i ∉ t ∧ insert i t = s ∧ Finset.card t = n
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
| rcases hn with ⟨i, t, hit, rfl, hn⟩ | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case succ.intro.intro.intro.intro
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
hp : ∀ i_1 ∈ insert i t, IsPrime (f i_1)
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i t, I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
| replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case succ.intro.intro.intro.intro
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i t, I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
| by_cases Ht : ∃ j ∈ t, f j ≤ f i | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case pos
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ∃ j ∈ t, f j ≤ f i
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i t, I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· | obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· | Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case pos.intro.intro
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
j : ι
hjt : j ∈ t
hfji : f j ≤ f i
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i t, I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
| obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩ | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case pos.intro.intro.intro.intro
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i j : ι
hfji : f j ≤ f i
u : Finset ι
hju : j ∉ u
hit : i ∉ insert j u
hn : Finset.card (insert j u) = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i (insert j u)), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ insert j u, IsPrime (f x)
hjt : j ∈ insert j u
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i (insert j u), I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
| have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩ | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i j : ι
hfji : f j ≤ f i
u : Finset ι
hju : j ∉ u
hit : i ∉ insert j u
hn : Finset.card (insert j u) = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i (insert j u)), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ insert j u, IsPrime (f x)
hjt : j ∈ insert j u
⊢ ∀ k ∈ insert i u, IsPrime (f k) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
| rw [Finset.forall_mem_insert] at hp ⊢ | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i j : ι
hfji : f j ≤ f i
u : Finset ι
hju : j ∉ u
hit : i ∉ insert j u
hn : Finset.card (insert j u) = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i (insert j u)), ↑(f i_1)
hp : IsPrime (f i) ∧ IsPrime (f j) ∧ ∀ x ∈ u, IsPrime (f x)
hjt : j ∈ insert j u
⊢ IsPrime (f i) ∧ ∀ x ∈ u, IsPrime (f x) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
| exact ⟨hp.1, hp.2.2⟩ | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case pos.intro.intro.intro.intro
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i j : ι
hfji : f j ≤ f i
u : Finset ι
hju : j ∉ u
hit : i ∉ insert j u
hn : Finset.card (insert j u) = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i (insert j u)), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ insert j u, IsPrime (f x)
hjt : j ∈ insert j u
hp' : ∀ k ∈ insert i u, IsPrime (f k)
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i (insert j u), I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
| have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case pos.intro.intro.intro.intro
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i j : ι
hfji : f j ≤ f i
u : Finset ι
hju : j ∉ u
hit : i ∉ insert j u
hn : Finset.card (insert j u) = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i (insert j u)), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ insert j u, IsPrime (f x)
hjt : j ∈ insert j u
hp' : ∀ k ∈ insert i u, IsPrime (f k)
hiu : i ∉ u
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i (insert j u), I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
| have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju] | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i j : ι
hfji : f j ≤ f i
u : Finset ι
hju : j ∉ u
hit : i ∉ insert j u
hn : Finset.card (insert j u) = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i (insert j u)), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ insert j u, IsPrime (f x)
hjt : j ∈ insert j u
hp' : ∀ k ∈ insert i u, IsPrime (f k)
hiu : i ∉ u
⊢ Finset.card (insert i u) = n | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
| rwa [Finset.card_insert_of_not_mem] at hn ⊢ | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i j : ι
hfji : f j ≤ f i
u : Finset ι
hju : j ∉ u
hit : i ∉ insert j u
hn : Finset.card u + 1 = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i (insert j u)), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ insert j u, IsPrime (f x)
hjt : j ∈ insert j u
hp' : ∀ k ∈ insert i u, IsPrime (f k)
hiu : i ∉ u
⊢ i ∉ u
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i j : ι
hfji : f j ≤ f i
u : Finset ι
hju : j ∉ u
hit : i ∉ insert j u
hn : Finset.card (insert j u) = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i (insert j u)), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ insert j u, IsPrime (f x)
hjt : j ∈ insert j u
hp' : ∀ k ∈ insert i u, IsPrime (f k)
hiu : i ∉ u
⊢ j ∉ u | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
| exacts [hiu, hju] | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case pos.intro.intro.intro.intro
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i j : ι
hfji : f j ≤ f i
u : Finset ι
hju : j ∉ u
hit : i ∉ insert j u
hn : Finset.card (insert j u) = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i (insert j u)), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ insert j u, IsPrime (f x)
hjt : j ∈ insert j u
hp' : ∀ k ∈ insert i u, IsPrime (f k)
hiu : i ∉ u
hn' : Finset.card (insert i u) = n
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i (insert j u), I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
| have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i j : ι
hfji : f j ≤ f i
u : Finset ι
hju : j ∉ u
hit : i ∉ insert j u
hn : Finset.card (insert j u) = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i (insert j u)), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ insert j u, IsPrime (f x)
hjt : j ∈ insert j u
hp' : ∀ k ∈ insert i u, IsPrime (f k)
hiu : i ∉ u
hn' : Finset.card (insert i u) = n
⊢ ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ k ∈ ↑(insert i u), ↑(f k) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
| rw [Finset.coe_insert] at h ⊢ | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i j : ι
hfji : f j ≤ f i
u : Finset ι
hju : j ∉ u
hit : i ∉ insert j u
hn : Finset.card (insert j u) = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ insert i ↑(insert j u), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ insert j u, IsPrime (f x)
hjt : j ∈ insert j u
hp' : ∀ k ∈ insert i u, IsPrime (f k)
hiu : i ∉ u
hn' : Finset.card (insert i u) = n
⊢ ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ k ∈ insert i ↑u, ↑(f k) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
| rw [Finset.coe_insert] at h | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i j : ι
hfji : f j ≤ f i
u : Finset ι
hju : j ∉ u
hit : i ∉ insert j u
hn : Finset.card (insert j u) = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ insert i (insert j ↑u), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ insert j u, IsPrime (f x)
hjt : j ∈ insert j u
hp' : ∀ k ∈ insert i u, IsPrime (f k)
hiu : i ∉ u
hn' : Finset.card (insert i u) = n
⊢ ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ k ∈ insert i ↑u, ↑(f k) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
| simp only [Set.biUnion_insert] at h ⊢ | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i j : ι
hfji : f j ≤ f i
u : Finset ι
hju : j ∉ u
hit : i ∉ insert j u
hn : Finset.card (insert j u) = n
hp : IsPrime (f i) ∧ ∀ x ∈ insert j u, IsPrime (f x)
hjt : j ∈ insert j u
hp' : ∀ k ∈ insert i u, IsPrime (f k)
hiu : i ∉ u
hn' : Finset.card (insert i u) = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ (↑(f i) ∪ (↑(f j) ∪ ⋃ x ∈ ↑u, ↑(f x)))
⊢ ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ (↑(f i) ∪ ⋃ x ∈ ↑u, ↑(f x)) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
| rw [← Set.union_assoc (f i : Set R)] at h | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i j : ι
hfji : f j ≤ f i
u : Finset ι
hju : j ∉ u
hit : i ∉ insert j u
hn : Finset.card (insert j u) = n
hp : IsPrime (f i) ∧ ∀ x ∈ insert j u, IsPrime (f x)
hjt : j ∈ insert j u
hp' : ∀ k ∈ insert i u, IsPrime (f k)
hiu : i ∉ u
hn' : Finset.card (insert i u) = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ (↑(f i) ∪ ↑(f j) ∪ ⋃ x ∈ ↑u, ↑(f x))
⊢ ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ (↑(f i) ∪ ⋃ x ∈ ↑u, ↑(f x)) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
| erw [Set.union_eq_self_of_subset_right hfji] at h | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i j : ι
hfji : f j ≤ f i
u : Finset ι
hju : j ∉ u
hit : i ∉ insert j u
hn : Finset.card (insert j u) = n
hp : IsPrime (f i) ∧ ∀ x ∈ insert j u, IsPrime (f x)
hjt : j ∈ insert j u
hp' : ∀ k ∈ insert i u, IsPrime (f k)
hiu : i ∉ u
hn' : Finset.card (insert i u) = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ (↑(f i) ∪ ⋃ x ∈ ↑u, ↑(f x))
⊢ ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ (↑(f i) ∪ ⋃ x ∈ ↑u, ↑(f x)) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
| exact h | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case pos.intro.intro.intro.intro
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i j : ι
hfji : f j ≤ f i
u : Finset ι
hju : j ∉ u
hit : i ∉ insert j u
hn : Finset.card (insert j u) = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i (insert j u)), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ insert j u, IsPrime (f x)
hjt : j ∈ insert j u
hp' : ∀ k ∈ insert i u, IsPrime (f k)
hiu : i ∉ u
hn' : Finset.card (insert i u) = n
h' : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ k ∈ ↑(insert i u), ↑(f k)
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i (insert j u), I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
| specialize ih hp' hn' h' | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case pos.intro.intro.intro.intro
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
a b i j : ι
hfji : f j ≤ f i
u : Finset ι
hju : j ∉ u
hit : i ∉ insert j u
hn : Finset.card (insert j u) = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i (insert j u)), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ insert j u, IsPrime (f x)
hjt : j ∈ insert j u
hp' : ∀ k ∈ insert i u, IsPrime (f k)
hiu : i ∉ u
hn' : Finset.card (insert i u) = n
h' : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ k ∈ ↑(insert i u), ↑(f k)
ih : I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i u, I ≤ f i_1
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i (insert j u), I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
| refine' ih.imp id (Or.imp id (Exists.imp fun k => _)) | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case pos.intro.intro.intro.intro
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
a b i j : ι
hfji : f j ≤ f i
u : Finset ι
hju : j ∉ u
hit : i ∉ insert j u
hn : Finset.card (insert j u) = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i (insert j u)), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ insert j u, IsPrime (f x)
hjt : j ∈ insert j u
hp' : ∀ k ∈ insert i u, IsPrime (f k)
hiu : i ∉ u
hn' : Finset.card (insert i u) = n
h' : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ k ∈ ↑(insert i u), ↑(f k)
ih : I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i u, I ≤ f i_1
k : ι
⊢ k ∈ insert i u ∧ I ≤ f k → k ∈ insert i (insert j u) ∧ I ≤ f k | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
| exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case neg
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i t, I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
| by_cases Ha : f a ≤ f i | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case pos
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : f a ≤ f i
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i t, I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· | have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· | Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : f a ≤ f i
⊢ ↑I ⊆ ↑(f i) ∪ ↑(f b) ∪ ⋃ j ∈ ↑t, ↑(f j) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
| rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f i) ∪ ↑(f b) ∪ ⋃ x ∈ ↑t, ↑(f x)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : f a ≤ f i
⊢ ↑I ⊆ ↑(f i) ∪ ↑(f b) ∪ ⋃ j ∈ ↑t, ↑(f j) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
| erw [Set.union_eq_self_of_subset_left Ha] at h | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f i) ∪ ↑(f b) ∪ ⋃ x ∈ ↑t, ↑(f x)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : f a ≤ f i
⊢ ↑I ⊆ ↑(f i) ∪ ↑(f b) ∪ ⋃ j ∈ ↑t, ↑(f j) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
| exact h | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case pos
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : f a ≤ f i
h' : ↑I ⊆ ↑(f i) ∪ ↑(f b) ∪ ⋃ j ∈ ↑t, ↑(f j)
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i t, I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
| specialize ih hp.2 hn h' | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case pos
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : f a ≤ f i
h' : ↑I ⊆ ↑(f i) ∪ ↑(f b) ∪ ⋃ j ∈ ↑t, ↑(f j)
ih : I ≤ f i ∨ I ≤ f b ∨ ∃ i ∈ t, I ≤ f i
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i t, I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
| right | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case pos.h
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : f a ≤ f i
h' : ↑I ⊆ ↑(f i) ∪ ↑(f b) ∪ ⋃ j ∈ ↑t, ↑(f j)
ih : I ≤ f i ∨ I ≤ f b ∨ ∃ i ∈ t, I ≤ f i
⊢ I ≤ f b ∨ ∃ i_1 ∈ insert i t, I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
| rcases ih with (ih | ih | ⟨k, hkt, ih⟩) | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case pos.h.inl
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : f a ≤ f i
h' : ↑I ⊆ ↑(f i) ∪ ↑(f b) ∪ ⋃ j ∈ ↑t, ↑(f j)
ih : I ≤ f i
⊢ I ≤ f b ∨ ∃ i_1 ∈ insert i t, I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· | exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩ | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· | Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case pos.h.inr.inl
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : f a ≤ f i
h' : ↑I ⊆ ↑(f i) ∪ ↑(f b) ∪ ⋃ j ∈ ↑t, ↑(f j)
ih : I ≤ f b
⊢ I ≤ f b ∨ ∃ i_1 ∈ insert i t, I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· | exact Or.inl ih | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· | Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case pos.h.inr.inr.intro.intro
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : f a ≤ f i
h' : ↑I ⊆ ↑(f i) ∪ ↑(f b) ∪ ⋃ j ∈ ↑t, ↑(f j)
k : ι
hkt : k ∈ t
ih : I ≤ f k
⊢ I ≤ f b ∨ ∃ i_1 ∈ insert i t, I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· | exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩ | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· | Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case neg
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : ¬f a ≤ f i
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i t, I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
| by_cases Hb : f b ≤ f i | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case pos
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : ¬f a ≤ f i
Hb : f b ≤ f i
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i t, I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· | have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· | Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : ¬f a ≤ f i
Hb : f b ≤ f i
⊢ ↑I ⊆ ↑(f a) ∪ ↑(f i) ∪ ⋃ j ∈ ↑t, ↑(f j) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
| rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ (↑(f b) ∪ ↑(f i)) ∪ ⋃ x ∈ ↑t, ↑(f x)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : ¬f a ≤ f i
Hb : f b ≤ f i
⊢ ↑I ⊆ ↑(f a) ∪ ↑(f i) ∪ ⋃ j ∈ ↑t, ↑(f j) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
| erw [Set.union_eq_self_of_subset_left Hb] at h | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f i) ∪ ⋃ x ∈ ↑t, ↑(f x)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : ¬f a ≤ f i
Hb : f b ≤ f i
⊢ ↑I ⊆ ↑(f a) ∪ ↑(f i) ∪ ⋃ j ∈ ↑t, ↑(f j) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
| exact h | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case pos
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : ¬f a ≤ f i
Hb : f b ≤ f i
h' : ↑I ⊆ ↑(f a) ∪ ↑(f i) ∪ ⋃ j ∈ ↑t, ↑(f j)
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i t, I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
| specialize ih hp.2 hn h' | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case pos
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : ¬f a ≤ f i
Hb : f b ≤ f i
h' : ↑I ⊆ ↑(f a) ∪ ↑(f i) ∪ ⋃ j ∈ ↑t, ↑(f j)
ih : I ≤ f a ∨ I ≤ f i ∨ ∃ i ∈ t, I ≤ f i
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i t, I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
| rcases ih with (ih | ih | ⟨k, hkt, ih⟩) | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case pos.inl
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : ¬f a ≤ f i
Hb : f b ≤ f i
h' : ↑I ⊆ ↑(f a) ∪ ↑(f i) ∪ ⋃ j ∈ ↑t, ↑(f j)
ih : I ≤ f a
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i t, I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· | exact Or.inl ih | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· | Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case pos.inr.inl
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : ¬f a ≤ f i
Hb : f b ≤ f i
h' : ↑I ⊆ ↑(f a) ∪ ↑(f i) ∪ ⋃ j ∈ ↑t, ↑(f j)
ih : I ≤ f i
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i t, I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· | exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩) | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· | Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case pos.inr.inr.intro.intro
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : ¬f a ≤ f i
Hb : f b ≤ f i
h' : ↑I ⊆ ↑(f a) ∪ ↑(f i) ∪ ⋃ j ∈ ↑t, ↑(f j)
k : ι
hkt : k ∈ t
ih : I ≤ f k
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i t, I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· | exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩) | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· | Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case neg
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : ¬f a ≤ f i
Hb : ¬f b ≤ f i
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i t, I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
| by_cases Hi : I ≤ f i | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case pos
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : ¬f a ≤ f i
Hb : ¬f b ≤ f i
Hi : I ≤ f i
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i t, I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· | exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩) | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· | Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case neg
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : ¬f a ≤ f i
Hb : ¬f b ≤ f i
Hi : ¬I ≤ f i
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i t, I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
| have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩ | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : ¬f a ≤ f i
Hb : ¬f b ≤ f i
Hi : ¬I ≤ f i
⊢ ¬I ⊓ f a ⊓ f b ⊓ Finset.inf t f ≤ f i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
| simp only [hp.1.inf_le, hp.1.inf_le', not_or] | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : ¬f a ≤ f i
Hb : ¬f b ≤ f i
Hi : ¬I ≤ f i
⊢ ((¬I ≤ f i ∧ ¬f a ≤ f i) ∧ ¬f b ≤ f i) ∧ ¬∃ i_1 ∈ t, f i_1 ≤ f i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
| exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩ | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case neg
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : ¬f a ≤ f i
Hb : ¬f b ≤ f i
Hi : ¬I ≤ f i
this : ¬I ⊓ f a ⊓ f b ⊓ Finset.inf t f ≤ f i
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i t, I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
| rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩ | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |
case neg.intro.intro.intro.intro.intro
R✝ : Type u
ι : Type u_1
inst✝¹ : CommSemiring R✝
I✝ J K L : Ideal R✝
R : Type u
inst✝ : CommRing R
f : ι → Ideal R
I : Ideal R
n : ℕ
ih :
∀ {s : Finset ι} {a b : ι},
(∀ i ∈ s, IsPrime (f i)) →
Finset.card s = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
a b i : ι
t : Finset ι
hit : i ∉ t
hn : Finset.card t = n
h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1)
hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x)
Ht : ¬∃ j ∈ t, f j ≤ f i
Ha : ¬f a ≤ f i
Hb : ¬f b ≤ f i
Hi : ¬I ≤ f i
this : ¬I ⊓ f a ⊓ f b ⊓ Finset.inf t f ≤ f i
r : R
hri : r ∉ ↑(f i)
hr : r ∈ ↑(Finset.inf t f)
hrb : r ∈ ↑(f b)
hrI : r ∈ ↑I
hra : r ∈ ↑(f a)
⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i_1 ∈ insert i t, I ≤ f i_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
| by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
| Mathlib.RingTheory.Ideal.Operations.1127_0.5qK551sG47yBciY | theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i | Mathlib_RingTheory_Ideal_Operations |